Regional Air Quality Analyses for Ozone, PM2.5, and Regional Haze: Final Technical Support Document (Supplement), September 12, 2008

The purpose of this paper is to summarize a new modeling analysis performed by the Lake Michigan Air Directors Consortium (LADCO) to address the effect of the recent court decision vacating EPA's Clean Air Interstate Rule (CAIR). This new modeling is intended to supplement the LADCO Technical Support Document ("Regional Air Quality Analyses for Ozone, PM2.5, and Regional Haze: Final Technical Support Document", April 25, 2008), which summarizes the air quality analyses conducted by LADCO and its contractors to support the development of State Implementation Plans for ozone, PM2.5, and regional haze in the States of Illinois, Indiana, Michigan, Ohio, and Wisconsin.

Compared to the previous LADCO modeling (Round 5.1), the new modeling shows similar results for ozone, but much more nonattainment for PM2.5 and higher visibility levels for regional haze. Specifically, the new modeling shows:

Ozone: Attainment of the 0.08 ppm standard by 2009 everywhere in the region, except Holland, MI, and nonattainment of the 0.075 ppm standard through at least 2018.

PM2.5: Widespread nonattainment of annual (15 ug/m³) and daily (35 ug/m³) standards.

Haze: Higher visibility levels on the 20% worst visibility days in 2018 in Class I areas in the eastern U.S., resulting in most areas being above the glide path.

Background: On July 11, 2008, the U.S. Court of Appeals for D.C. Circuit vacated EPA's CAIR rule (cite). The reductions in NOx and SO2 emissions associated with this rule were a key part of the LADCO States' attainment demonstrations for ozone and PM2.5 and the reasonable progress determinations for regional haze. LADCO's previous modeling (Round 5.1) relied on EGU emission projections from EPA's IPM3.0 analysis, which assumed implementation of Phases I and II of CAIR. For this new modeling, alternative EGU emission projections were developed, which did not rely on CAIR (or IPM).

Model Set-Up: The new modeling was performed consistent with LADCO's previous modeling (Round 5.1):

Model Version: CAMx v4.50beta_deposition Future Years: 2009, 2012, 2018 Runs: (a) Ozone: Summer 2005 meteorology with 12 km grids (b) PM2.5 and haze: Full year 2005 meteorology with 36 km grids

Emission Scenarios: The new modeling assumed the same set of "on the books" controls as in LADCO's previous modeling (Round 5.1) for all sectors, except EGUs. In light of the CAIR decision, three new EGU scenarios were prepared:

Scenario A: 2007 CEM-based emissions were projected for all states in the modeling domain based on EIA growth rates by state (NERC region) and fuel type. The assumed growth rates for the Midwest States were: MAIN (IL, IA, MO, WI): 8.8% (2007-2018); ECAR (IN, KY, MI, OH): 13.5% (2007-2018); and MAPP (MN): 15.1% (2007-2018). No control was applied. The annual emissions were temporalized based on profiles derived from 2004-2006 CEM data. (Note, these are the same temporal profiles used in Round 5.1.)

Scenario B. Scenario A emissions for the LADCO States and select neighboring states (e.g., MN, IA, MO, KY, TN, and WV) were adjusted by applying legally enforceable controls (i.e., emission reductions required by a Consent Decree, state rule, or permit). Only those legally enforceable controls identified (and justified) by the States were applied. The States also supplied the appropriate control factors. A table summarizing the Scenario B controls is provided in Appendix I.

Scenario C. For the years 2009 and 2012, Scenario A emissions for all states were adjusted by applying all planned SO2 and NOx controls based on the July 10 CAMD list (i.e., 90% reduction for scrubbers, 95% reduction for SCRs). Because the July 10 CAMD list only includes controls generally out to 2011, additional SO2 and NOx controls for the year 2018 were assumed for all BART-eligible EGUs in the five LADCO State plus MN, IA, MO, KY, TN, and MO list (i.e., 90% reduction for SCRs).¹ All Scenario B controls were included in Scenario C. A table summarizing the Scenario C controls is provided in Appendix II.

Table 1 and Figure 1 provide a summary of the 5-state regional NOx and SO2 emissions for each scenario and future year. (Note, the CAIR emissions included here are based on EPA's IPM3.0 modeling.) Several comments on the emissions should be noted:

Summer NOx

• There is llittle difference between the three alternative scenarios and CAIR. This suggests that summer ozone concentrations for the alternative scenarios are likely to be similar to those predicted with CAIR (i.e., Round 5.1).

Annual NOx:

- There is a significant change in emissions between scenarios, mostly during the non-summer months.
- Scenario B reflects application of NOx controls in several states (e.g., IL,OH,WI).
- Because there are relatively few SCRs (in the LADCO States) on the CAMD list, Scenario C results in only a small emissions decrease compared to Scenario B.
- Assumed BART controls result in a significant emissions decrease. Annual SO2
- There is a significant change in emissions between scenarios.
- Scenario B reflects application of SO2 controls in several states (e.g., IL,OH,WI).
- Because there are several FGDs (in the LADCO States) on the CAMD list, Scenario C results in a large emissions decrease compared to Scenario B.
- Assumed BART controls result in a significant emissions decrease (i.e., even lower emissions than the IPM-estimated CAIR emissions).

¹ A subsequent analysis was conducted with the following inventory changes: (a) 95% reduction for scrubbers, 90% reduction for SCRs (consistent with EPA's default assumptions for IPM), and (b) revisions provided for a few plants in Indiana and Minnesota. The changes resulted in a relatively small difference in the regional NOx and SO2 emissions (e.g., about a 2% NOx increase and about a 1-2% decrease in SO2). To assess the impact of the changes, PM2.5 modleing was conducted with the new Scenario B and Scenario C emissions for 2012. The modeling showed little change in the predicted PM2.5 concentrations.

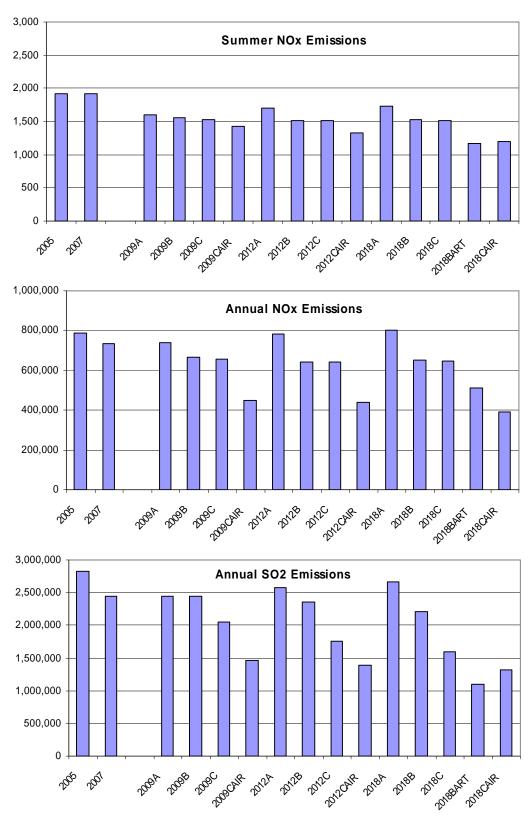


Figure 1. Regional NOx and SO2 Emissions

Table 1. Regional NOx and SO2 Emissions

Su	mmer N	Ox Emis	sions (TP	D)											
	2005	2007	2009 A	2009 B	2009 C	2010 CAIR	2012 A	2012 B	2012 C	2012 CAIR	2018 A	2018 B	2018 C	2018 C- BART	2018 CAIR
IL	305	305	311	311	311	275	340	236	236	266	333	227	227	219	224
IN	393	393	376	376	374	384	393	393	390	368	410	386	383	292	264
МІ	393	393	350	350	350	242	366	366	366	229	377	377	377	260	243
ОН	408	408	395	355	335	285	423	351	351	290	431	366	366	230	290
WI	413	413	167	160	160	238	184	170	170	177	183	168	168	168	177
	1,912	1,912	1,599	1,552	1,530	1,424	1,706	1,516	1,513	1,330	1,734	1,524	1,521	1,169	1,198
An	nual NO	x Emissi	ons (TPY)											
	2005	2007	2009 A	2009 B	2009 C	2010 CAIR	2012 A	2012 B	2012 C	2012 CAIR	2018 A	2018 B	2018 C	2018 C- BART	2018 CAIR
IL	126,786	121,006	124,917	124,917	124,917	83,224	137,438	81,989	81,989	82,248	135,983	79,771	79,771	63,590	69,958
IN	214,727	203,493	203,776	203,776	201,947	133,188	212,790	212,790	210,877	125,541	221,950	212,805	210,810	177,027	90,415
МІ	120,332	112,484	112,478	112,478	112,478	83,117	117,621	117,621	117,621	77,897	122,447	122,447	122,447	89,444	79,543
ОН	255,554	240,351	240,016	173,071	164,911	94,346	251,065	172,514	172,514	97,679	261,644	179,737	179,737	125,762	95,678
wi	71,414	54,582	56,540	54,065	54,065	53,032	62,266	57,759	57,759	56,480	61,812	56,952	56,952	56,952	56,158
	788,812	731,917	737,727	668,307	658,317	446,908	781,179	642,673	640,760	439,845	803,837	651,712	649,717	512,774	391,752
An	nual SO	2 Emissi	ons (TPY	´)											
	2005	2007	2009 A	2009 B	2009 C	2010 CAIR	2012 A	2012 B	2012 C	2012 CAIR	2018 A	2018 B	2018 C	2018 C- BART	2018 CAIR
IL	326,598	273,467	281,028	281,028	281,028	295,516	309,209	196,238	194,746	267,110	305,364	106,638	105,152	82,351	275,716
IN	866,964	722,301	721,252	721,252	619,486	374,335	754,323	754,323	558,567	379,144	786,551	764,065	559,945	426,695	359,915
МІ	350,694	343,487	343,140	343,140	315,326	227,296	358,879	358,879	301,062	233,204	373,964	373,964	313,677	178,680	242,853
ОН	1,100,510	960,820	959,466	959,466	693,438	427,145	1,003,633	897,099	572,807	370,532	1,045,945	819,770	481,623	333,740	315,560
wı	181,426	137,562	142,007	142,007	133,738	139,181	156,659	144,818	133,592	139,203	155,818	144,027	132,849	77,214	127,073
	2,826,192	2,437,638	2,446,892	2,446,892	2,043,017	1,463,473	2,582,703	2,351,356	1,760,775	1,389,192	2,667,641	2,208,463	1,593,245	1,098,679	1,321,116

Modeling Results: Several tables summarizing the modeling results are provided:

- Table 2 future year ozone and PM2.5 concentrations for key monitors in the LADCO region
- Table 3 number of monitoring sites greater than the National Ambient Air Quality Standards (NNAQS)
- Table 4 visibility levels for Class I areas in the eastern U.S.

Note, given that Scenario B and BART controls were only applied in an 11-state Midwest region, the validity of the results for other Class I areas in the eastern U.S. may be questionable. The Scenario C controls, on the other hand, cover all states and are, thus, likely valid in other Class I areas.

Spatial plots of the future year ozone and PM2.5 concentrations are provided in Figures 2 - 4.

Based on these results, the following key findings should be noted:

Ozone

- There is little change from the previous LADCO modeling (Round 5.1 with CAIR)
- The modeling shows attainment of the 0.08 ppm (85 ppb) standard by 2009, except Holland. (Note, Holland does meet this standard by 2012.)
- The modeling shows nonattainment of the 0.075 ppm (75 ppb) standard through 2018.

PM2.5 - Annual

- There is a significant change from the previous LADCO modeling (Round 5.1 with CAIR)
- The modeling shows extensive nonattainment of the annual standard.

PM2.5 - Daily

- There is a significant change from the previous LADCO modeling (Round 5.1 with CAIR)
- The modeling shows extensive nonattainment of the daily standard.

Haze

- There is a significant change from the previous LADCO modeling (Round 5.1 with CAIR)
- The modeling shows higher visibility levels in 2018 for the 20% worst visibility days (average about 0.5 deciviews for the northern Class I areas). The resulting visibility levels in the northern Class I areas (except Voyageurs) are above the glide path.

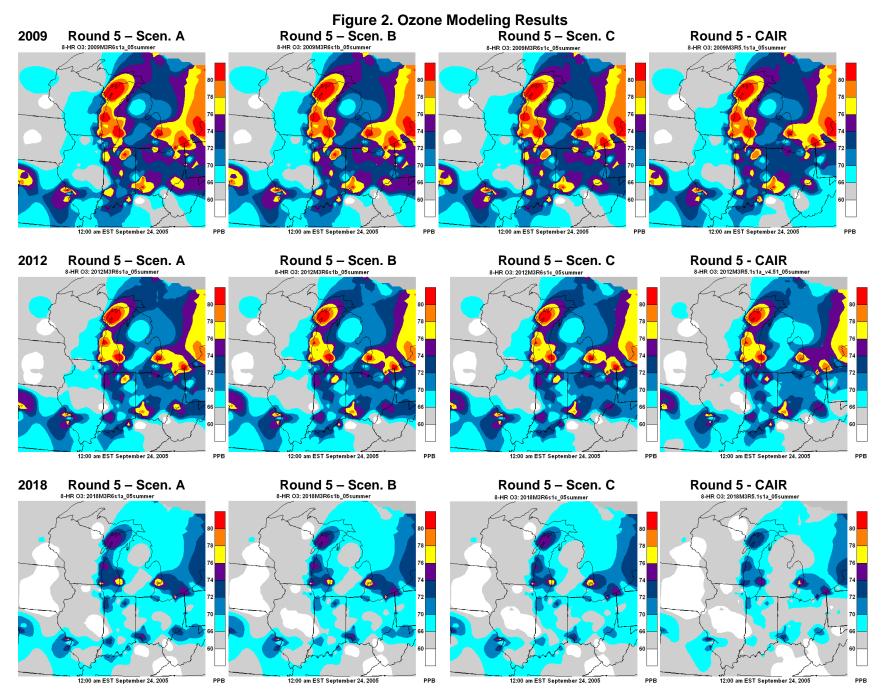
Electronic Filing	Deceived	Clark's Offica	January 21 2000
	Trecented,		$\frac{1}{2}$
Table 2	a. Ozone	Modeling Re	sults

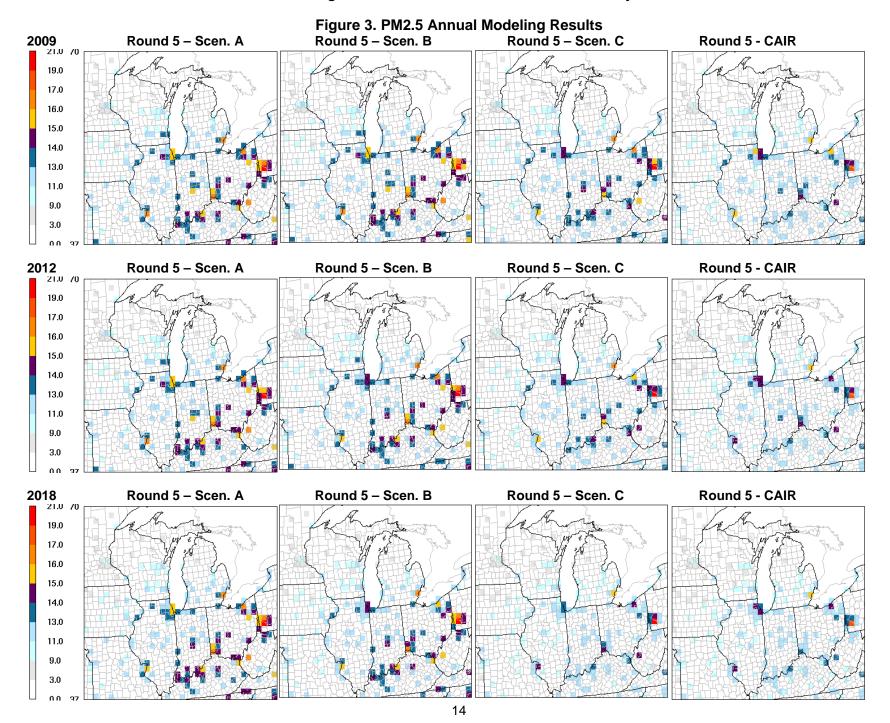
		0005				020110				ano					
		2005		2	009	Round 5		2	2012	Round 5			201	18	Round 5
			Roun	d 5 withou		with CAIR	Roun	d 5 withou		with CAIR		Round	5 without	CAIR	with CAIR
Site	Site ID	Base Year	Scen. A	1	1		Scen. A		Scen.C		Scen. A	Scen. B	Scen.C	Scen.C-BART	
Lake Michigan Area															
Chiwaukee	550590019	84.7	82.2	82.2	82.0	82.3	81.1	80.8	80.6	80.9	77.2	77.2	77.0	76.0	76.2
Racine	551010017	80.3	77.8	77.8	77.5	77.5	76.6	76.2	76.1	76.1	72.9	72.3	72.1	71.1	71.2
Milwaukee-Bayside	550890085		79.9	79.9	79.7	79.8	78.5	78.0	78.0	78.0	74.3	73.6	73.4	72.4	72.7
Harrington Beach	550890009	83.3	80.1	80.1	79.9	80.1	78.6	78.1	78.0	78.3	73.9	73.2	73.1	72.2	72.5
Manitowoc	550710007	85.0	80.8	80.8	80.7	80.8	79.0	78.5	78.4	78.6	73.9	73.2	73.1	72.0	72.5
Sheboygan	551170006		84.1	84.0	83.9	84.0	82.2	81.7	81.5	81.8	76.9	76.0	75.9	74.8	75.4
Kewaunee	550610002	82.7	78.2	78.2	78.0	78.1	76.4	75.9	75.7	75.9	71.3	70.7	70.5	69.4	69.9
Door County	550290004	88.7	84.1	84.1	83.9	83.9	82.0	81.4	81.3	81.5	76.5	75.6	75.5	74.2	74.7
Hammond	180892008	77.7	76.2	76.2	76.0	75.4	75.6	75.3	75.2	74.6	73.2	72.7	72.6	71.7	71.6
Whiting	180890030	79.3	77.8	77.8	77.7	77.0	77.2	76.9	76.8	76.2	74.8	74.3	74.2	73.2	73.1
Michigan City	180910005	77.0	74.5	74.5	74.3	73.9	73.3	72.9	72.8	72.5	69.7	69.2	69.1	68.1	68.1
Ogden Dunes	181270020	78.3	76.3	76.3	76.2	75.6	75.5	75.1	75.0	74.5	72.9	72.3	72.1	71.2	70.8
Holland	260050003	90.0	85.7	85.7	85.5	85.3	83.5	83.1	82.9	82.8	78.2	77.5	77.3	76.0	76.1
Jenison	261390005	82.0	76.8	76.8	76.7	76.0	75.1	74.6	74.5	74.5	70.2	69.6	69.5	67.9	68.7
Muskegon	261210039	85.0	80.6	80.6	80.5	80.5	78.6	78.2	78.1	78.0	73.5	72.8	72.8	71.5	71.9
Indianapolis Area															
Noblesville	189571001	82.7	78.3	78.3	78.1	78.1	76.1	75.9	75.7	75.6	70.2	69.9	69.8	68.9	68.7
Fortville	180590003	78.0	74.1	74.1	73.9	73.9	71.9	71.8	71.7	71.4	66.7	66.5	66.3	65.4	65.1
Fort B. Harrison	180970050	78.7	75.4	75.3	75.2	75.1	73.8	73.6	73.6	73.2	70.6	70.3	70.2	69.3	69.1
Detroit Area															
New Haven	260990009	86.0	82.4	82.3	82.1	81.4	81.4	81.2	81.1	80.2	78.1	77.8	77.7	76.5	76.1
Warren	260991003	84.0	82.4	82.3	82.2	81.3	82.1	81.8	81.7	80.7	79.7	79.4	79.3	78.0	77.6
Port Huron	261470005	82.7	78.2	78.2	78.1	77.5	76.5	76.3	76.2	75.5	72.6	72.5	72.3	70.9	70.9
Cleveland Area															
Ashtabula	390071001	89.0	84.2	84.1	83.9	83.4	82.0	81.8	81.6	81.0	76.8	76.5	76.4	74.8	75.1
Geauga	390550004	79.3	75.8	75.8	75.6	74.7	74.0	73.8	73.7	72.7	69.5	69.2	69.1	67.6	67.3
Eastlake	390850003	86.3	83.1	83.1	82.9	81.9	81.8	81.6	81.5	80.5	78.2	78.0	77.8	76.5	76.2
Akron	391530020	83.7	79.1	79.1	79.0	78.1	76.9	76.7	76.6	75.6	70.9	70.6	70.4	68.7	68.7
Cincinnati Area															
Wilmington	390271002		77.3	77.4	77.1	77.5	75.3	75.2	74.8	74.9	70.1	69.9	69.5	67.1	68.3
Sycamore	390610006	84.7	81.5	81.4	81.1	81.9	80.4	80.2	79.8	80.3	76.4	76.0	75.7	73.5	74.6
Lebanon	391650007	87.7	82.8	82.8	82.4	83.0	80.8	80.7	80.3	80.7	75.4	75.1	74.8	72.6	74.2
Columbus Area															
London	390970007		75.0	75.0	74.8	75.0	73.0	72.8	72.7	72.6	68.1	67.8	67.6	65.9	66.3
New Albany	390490029	86.3	82.1	82.1	81.9	81.8	80.2	80.0	79.9	79.6	74.7	74.3	74.2	73.3	73.0
Franklin	290490028	80.3	76.7	76.6	76.5	75.9	75.1	74.9	74.8	74.1	70.5	70.2	70.1	70.2	69.0
St. Louis Area															
W. Alton (MO)	291831002		81.1	81.2	81.1	81.0	80.0	79.9	79.9	78.6	76.9	76.8	76.7	74.2	74.9
Orchard (MO)	291831004		82.1	82.1	82.0	82.0	80.9	80.8	80.7	80.0	77.7	77.6	77.4	75.2	76.2
Sunset Hills (MO)	291890004		79.2	79.2	79.1	78.7	78.3	78.1	78.1	77.1	75.3	75.2	75.1	73.0	73.9
Arnold (MO)	290990012		77.8	77.8	77.7	77.2	76.7	76.6	76.5	75.6	73.6	73.4	73.4	71.3	72.0
Margaretta (MO)	295100086		79.8	79.8	79.7	79.3	78.8	78.7	78.6	77.9	75.7	75.6	75.5	73.7	74.4
Maryland Heights (MO)	291890014	87.3	85.4	85.4	85.3	84.0	84.3	84.1	84.0	81.7	81.1	80.9	80.8	78.4	78.1

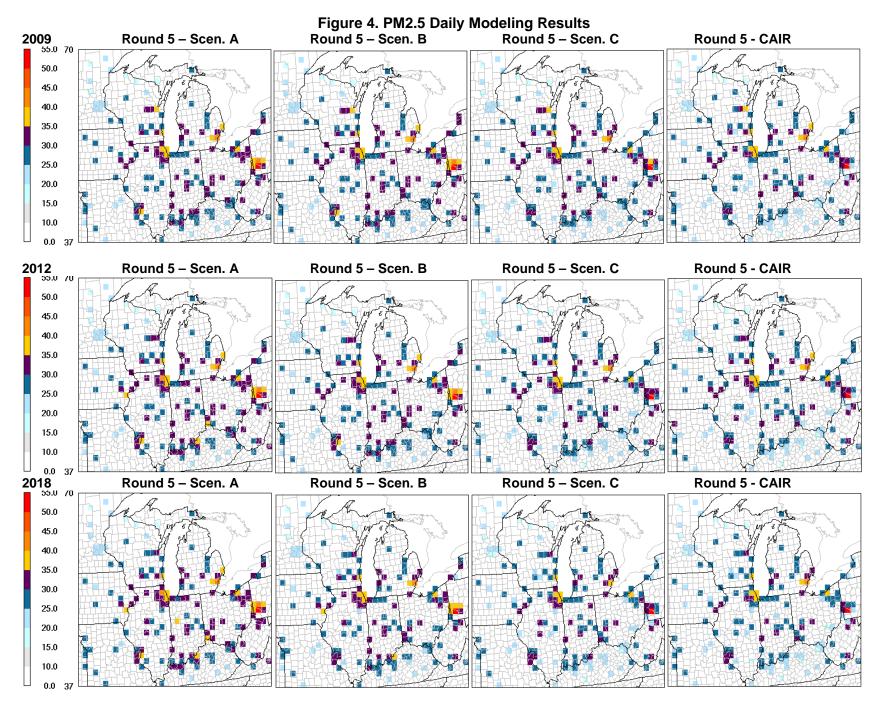
		El	ectroat	ŊĘ ØR	9 PI⊽	1 <u>2.5</u> eivide	lefilag	(R 05	iipes (Amplia	p 1, 200)9			
		2005		2	009		_	2	012				201	8	
						Round 5				Round 5					Round 5
			Roun	d 5 withou	t CAIR	with CAIR	Roun	d 5 withou	t CAIR	with CAIR		Round !	5 without	CAIR	with CAIR
Site	Site ID	Base Year	Scen. A	Scen. B	Scen.C		Scen. A	Scen. B	Scen.C		Scen. A	Scen. B	Scen.C	Scen.C-BART	
Illinois															
Chicago - Washington HS	170310022	15.2	14.9	14.8	14.5	14.1	14.8	14.7	14.2	14.0	15.0	14.6	14.2	13.7	13.9
Chicago - Mayfair	170310052	15.8	15.1	15.1	14.8	14.4	15.1	14.9	14.5	14.2	15.1	14.7	14.3	13.7	13.9
Chicago - Springfield	170310057	15.0	14.6	14.6	14.3	13.9	14.6	14.4	14.0	13.8	14.8	14.4	14.0	13.4	13.7
Chicago - Lawndale	170310076	14.9	14.5	14.5	14.2	13.8	14.5	14.3	13.9	13.7	14.7	14.3	13.9	13.3	13.6
Blue Island	170312001	14.8	14.4	14.4	14.0	13.7	14.4	14.2	13.8	13.6	14.5	14.1	13.7	13.2	13.4
Summit	170313301	15.2	14.9	14.9	14.6	14.2	14.9	14.7	14.3	14.0	15.0	14.6	14.3	13.7	13.9
Cicero	170316005	15.5	15.1	15.1	14.8	14.4	15.1	14.9	14.5	14.3	15.2	14.9	14.4	13.9	14.2
Granite City	171191007	16.7	16.3	16.2	15.9	15.1	16.1	16.0	15.3	14.9	15.9	15.6	14.9	14.2	14.3
E. St. Louis	171630010	15.6	15.2	15.2	14.8	14.1	15.0	14.9	14.3	13.9	14.9	14.6	14.0	13.3	13.4
	111000010	1010		1012	11.0		10.0	11.0	11.0	10.0	11.0	11.0	11.0	10.0	10.1
Indiana															
Jeffersonville	180190005	16.4	15.8	15.7	14.8	13.8	15.8	15.6	14.5	13.7	16.0	15.5	14.3	13.7	13.4
Jasper	180372001	15.2	14.3	14.2	13.4	12.4	14.2	14.0	13.0	12.2	14.3	13.9	12.8	12.1	11.8
Gary	180890031	15.6	13.9	13.9	13.5	13.0	13.8	13.6	13.1	12.8	13.7	13.4	12.9	12.3	12.4
Indy-Washington Park	180970078	15.3	14.4	14.4	13.6	12.8	14.3	14.2	13.2	12.6	14.3	13.9	12.9	12.2	12.0
Indy-W 18th Street	180970081	16.0	15.1	15.1	14.3		15.0	14.9	13.9		15.0	14.6	13.5	12.8	
Indy- Michigan Street	180970083	15.9	15.0	15.0	14.2	13.4	14.9	14.8	13.8	13.1	14.9	14.5	13.5	12.8	12.6
Michigan															
Allen Park	261630001	14.5	11.0	14.0	13.5	13.0	14.0	13.8	13.2	12.8	13.9	13.6	13.0	12.4	12.4
Southwest HS	261630015	15.9	15.3	15.3	14.8	14.2	15.2	15.0	14.4	13.9	15.1	14.8	14.1	13.5	13.5
Linwood	261630016	14.6	14.1	14.1	13.6	13.1	14.0	13.9	13.3	12.8	13.9	13.6	13.0	12.5	12.5
Dearborn	261630033	17.5	17.0	17.0	16.4	15.8	16.9	16.7	16.0	15.5	16.8	16.4	15.7	15.1	15.1
Wyandotte	261630036	14.7	14.2	14.1	13.6	13.1	14.1	13.9	13.3	12.8	14.0	13.7	13.0	12.4	12.5
-															
Ohio															
Middletown - Bonita	390170003	16.2	15.3	15.2	14.3	13.5	15.2	15.0	13.9	13.2	15.2	14.8	13.7	13.0	12.8
Fairfield	390170016		15.1	15.0	14.1	13.1	15.1	14.9	13.7	12.9	15.2	14.7	13.5	12.8	12.5
Cleveland-28th Street	390350027	15.4	14.9	14.9	14.3	13.5	14.7	14.5	13.9	13.2	14.6	14.2	13.5	12.8	12.7
Cleveland-St. Tikhon	390350038	17.4	16.7	16.7	16.0	15.2	16.5	16.3	15.6	14.8	16.3	16.0	15.2	14.4	14.3
Cleveland-Broadway	390350045	16.5	15.9	15.8	15.2	14.4	15.6	15.5	14.8	14.0	15.5	15.1	14.4	13.6	13.5
Cleveland-GT Craig	390350060	17.1	16.5	16.4	15.8	15.0	16.3	16.1	15.4	14.6	16.1	15.7	15.0	14.2	14.1
Newburg Hts - Harvard Ave	390350065	16.0	15.4	15.3	14.7	14.0	15.2	15.0	14.3	13.6	15.1	14.7	14.0	13.2	13.1
Columbus - Fairgrounds	390490024	15.3	14.6	14.5	13.7	12.9	14.4	14.1	13.2	12.6	14.2	13.8	12.8	12.2	12.0
Columbus - Ann Street	390490025	15.1	14.4	14.3	13.5	12.7	14.2	13.9	13.1	12.4	14.1	13.6	12.6	12.0	11.9
Cincinnati - Seymour	390610014	17.3	16.6	16.5	15.5	14.5	16.5	16.3	15.1	14.3	16.6	16.2	14.9	14.2	13.8
Cincinnati - Taft Ave	390610040	15.5	14.8	14.7	13.8	12.8	14.8	14.6	13.4	12.6	14.9	14.5	13.2	12.5	12.2
Cincinnati - 8th Ave	390610042	16.9	12.0	16.1	15.0	14.0	16.1	15.9	14.7	13.8	16.2	15.7	14.4	13.7	13.4
Sharonville	390610043	15.6	14.9	14.8	13.9	12.9	14.9	14.7	13.5	12.7	14.9	14.5	13.3	12.6	12.3
Norwood	390617001	16.2	15.5	15.4	14.4	13.4	15.4	15.2	14.0	13.2	15.5	15.1	13.8	13.1	12.8
St. Bernard	390618001	17.6	16.8	16.7	15.7	14.7	16.7	16.5	15.3	14.4	16.8	16.4	15.1	14.3	14.0
Steubenville	390810016		14.5	14.4	13.5	12.8	14.3	14.2	13.1	12.5	14.8	14.5	13.3	12.9	12.7
Mingo Junction	390811001	16.5	15.2	15.2	14.3	13.5	15.0	14.9	13.8	13.2	15.6	15.2	14.0	13.6	13.4
Ironton	390870010		14.8	14.6	13.6	12.8	14.6	14.4	13.2	12.5	14.8	14.1	12.8	12.4	12.3
Dayton	391130032		14.9	14.8	14.0	13.2	14.8	14.6	13.6	12.9	14.8	14.3	13.3	12.4	12.4
New Boston	391450013		12.0	14.0	13.0	12.1	14.1	13.8	12.5	11.9	14.2	13.6	12.2	11.7	11.6
Canton - Dueber	391510017		12.0	15.6	14.8	14.0	15.5	15.3	14.4	13.6	15.4	14.9	14.0	13.3	13.3
Canton - Market	391510017		11.0	14.1	13.3	12.6	13.9	13.7	12.9	12.3	13.9	13.5	14.0	12.0	11.9
Akron - Brittain	391530017		14.6	14.1	13.8	13.0	14.4	14.2	13.4	12.3	14.3	13.8	13.0	12.0	12.3
Akron - W. Exchange	391530017		13.7	14.5	13.0	12.3	13.6	13.3	12.6	12.7	14.3	13.0	12.2	11.6	12.5

	1	1	ectroniq					- U								
			2005		20	009	Round 5			012	Round 5			20 1	18	Round 5
				Rour	nd 5 withou	t CAIR	with CAIR	Roun	d 5 withou	t CAIR	with CAIR		Round	5 without	CAIR	with CAIR
Key Site	County	Site ID	Base Year	Scen. A	Scen. B	Scen.C		Scen. A	Scen. B	Scen.C		Scen. A	Scen. B	Scen.C	Scen. C - BART	
Illinois																
Chicago - Washington HS	Cook	170310022	36.6	36	36	36	36	36	36	37	36	37	36	37	37	35
Chicago - Mayfair	Cook	170310052	40.3	37	37	37	36	37	36	37	36	38	37	37	37	36
Chicago - Springfield	Cook	170310057	37.4	34	34	33	32	35	34	33	32	36	34	33	33	31
Chicago - Lawndale	Cook	170310076	38.1	35	35	35	35	36	35	36	35	36	35	36	36	34
McCook	Cook	170311016	43.0	39	39	39	39	40	39	40	39	40	40	41	40	38
Blue Island	Cook	170312001	37.7	35	35	35	34	36	35	36	34	36	35	36	36	33
Schiller Park	Cook	170313103	41.6	40	40	40	39	40	40	40	39	41	40	40	39	39
Summit	Cook	170313301	40.2	38	38	39	38	39	38	39	38	39	38	39	39	37
Maywood	Cook	170316005	39.2	38	38	38	38	38	38	39	38	39	38	39	39	37
Granite City	Madison	171191007	39.2	36	36	35	33	36	35	34	33	36	35	35	33	32
E. St. Louis	St. Clair	171630010	33.7	31	31	30	28	31	30	29	28	31	30	30	29	28
Indiana																
Jeffersonville	Clark	180190005	38.4	35	33	31	29	35	34	32	31	37	35	34	33	31
Jasper	Dubois	180372001	36.2	32	32	30	28	32	32	30	29	33	31	31	30	28
Gary - IITRI	Lake	180890022	39.0	35	35	35	34	35	34	35	34	36	36	36	35	35
Gary - Burr School	Lake	180890026	39.0	34	34	34	33	34	34	35	34	34	34	34	34	32
Gary	Lake	180890031	35.2	29	28	26	24	28	28	24	24	29	28	27	27	27
Indy-West Street	Marion	180970043	38.0	34	34	33	33	35	35	34	33	36	35	34	34	33
Indy-English Avenue	Marion	180970066	38.0	34	34	32	32	35	34	33	32	35	34	33	33	32
Indy-Washington Park	Marion	180970078	36.6	33	33	32	31	33	33	32	31	34	33	32	32	32
Indy-W 18th Street	Marion	180970081	38.3	33	33	31	31	33	33	32	31	34	33	32	32	31
Indy- Michigan Street	Marion	180970083	36.0	32	32	29	28	32	31	29	28	32	31	29	29	29
Michigan																
Luna Pier	Monroe	261150005	38.9	34	34	32	32	34	34	32	32	34	33	32	31	31
Oak Park	Oakland	261250001	39.9	38	38	37	36	38	37	37	36	38	37	37	36	35
Port Huron	St. Clair	261470005	39.6	36	35	35	34	35	35	35	34	35	35	34	33	33
Ypsilanti		261610008	39.5	37	37	36 36	35	37	36	36 36	35	37	36	34 36	35	34
Allen Park	Wayne	261630001	38.6	36	36	36	35	36	35	35	34	36	35	35	34	33
Southwest HS	Wayne	261630015	40.1	36	36	36	35	36	35	35	35	36	35	35	34	33
Linwood	Wayne	261630016	43.0	40	40	40	39 39	40	40	40	39 39	40	33 39	33 39	39	33 38
E 7 Mile	Wayne	261630019	41.0	39	39	39	38	39	39	39	38	39	38	38	38	37
Dearborn	Wayne	261630033	43.9	41	41	39 41	40	41	41	41	40	41	40		40	39
Wyandotte	Wayne	261630035	37.2	36	36	36	35	35	35	35	35	35	35	35	35	39
Newberry	Wayne	261630038	42.7	39	39	30	35 38	30 39	38	35 38	37	33 39	35 38	35 38	37	36
						39	33			36	33	39	34		33	
FIA	Wayne	261630039	39.7	35	34	34		35	34	34	33	30	- 34	33		31
Ohio																
Middleton	Butler	390170003	39.3	33	32	29	28	33	33	29	28	34	32	29	28	27
Fairfield	Butler	390170016	37.1	32	31	29	27	31	30	28	28	32	30	29	28	27
	Butler	390170017	40.8	33	32	30	29	33	33	30	29	33	32	30	29	28
Cleveland-28th Street	Cuyahoga	390350027	36.9	34	34	33	32	34	33	33	32	34	33	33	31	31
Cleveland-St. Tikhon	Cuyahoga	390350038	44.2	40	40	37	36	40	39	36	35	40	38	36	35	34
Cleveland-Broadway	Cuyahoga	390350045	38.8	35	35	33	31	35	34	32	30	35	34	31	29	29
Cleveland-GT Craig	Cuyahoga	390350060	42.1	39	39	38	37	39	38	38	37	39	38	37	36	35
Newburg Hts - Harvard Ave	, ,	390350065	38.9	35	35	33	31	35	34	32	30	36	35	32	31	30
Columbus - Fairgrounds	Franklin	390490024	38.5	34	34	33	33	34	33	32	32	34	34	33	32	31
Columbus - Ann Street	Franklin	390490025	38.5	34	33	31	31	33	33	31	31	34	33	31	31	30
Cincinnait	Hamilton	390610006	40.6	33	33	30	27	33	32	29	28	34	32	29	28	27

			2005		2	009			20	012				201	8	
				Round	l 5 withou	t CAIR	Round 5 with CAIR	Round	d 5 withou	t CAIR	Round 5 with CAIR		Round	5 without (CAIR	Round 5 with CAIR
Key Site	County	Site ID	Base Year	Scen. A	Scen. B	Scen.C		Scen. A	Scen. B	Scen.C		Scen. A	Scen. B	Scen.C	Scen. C - BART	
Cincinnati - Seymour	Hamilton	390610014	38.4	33	33	28	26	33	32	27	25	33	31	29	25	24
Cincinnati - Taft Ave	Hamilton	390610040	36.7	31	30	26	24	31	30	26	24	32	29	26	24	23
Cincinnati - 8th Ave	Hamilton	390610042	37.3	32	32	30	28	32	31	29	28	33	31	29	28	27
Sharonville	Hamilton	390610043	36.0	32	31	30	28	32	31	29	28	32	31	29	28	27
Norwood	Hamilton	390617001	38.8	34	33	32	30	33	33	31	30	34	33	31	30	29
St. Bernard	Hamilton	390618001	40.6	35	35	32	30	35	34	31	30	35	33	32	31	29
Steubenville	Jefferson	390810016	40.7	36	35	32	29	35	34	30	28	37	35	31	29	28
Mingo Junction	Jefferson	390811001	42.0	37	37	33	30	37	36	32	30	38	36	32	30	30
Dayton	Montgomery	391130032	37.8	34	33	31	30	33	33	31	30	34	33	31	31	30
Canton - Dueber	Stark	391510017	38.6	33	32	30	28	33	31	30	28	33	30	29	28	27
Akron - Brittain	Summit	391530017	38.1	33	33	31	30	33	32	31	30	33	32	30	29	29
Wisconsin																
Green Bay - Est High	Brown	550090005	37.1	35	34	35	35	34	35	35	34	33	33	33	32	32
Madison	Dane	550250047	36.4	33	33	32	32	33	32	32	31	32	31	30	29	29
Milwaukee-Health Center	Milwaukee	550790010	38.7	35	35	35	35	35	35	35	34	35	34	34	34	33
Milwaukee-SER Hdqs	Milwaukee	550790026	37.4	34	34	34	34	34	34	34	34	34	34	34	34	33
Milwaukee-Virginia FS	Milwaukee	550790043	39.9	37	37	37	36	37	36	37	36	36	36	37	36	36
Milwaukee- Fire Dept Hdqs	Milwaukee	550790099	37.8	34	34	33	33	34	33	33	32	34	33	33	33	32
Waukesha	Waukesha	551330027	35.5	32	32	32	31	32	32	32	31	32	31	31	30	29


Ozone (85 ppb)			Round 5	without CAIR		Round 5 w/ CAIF
2009	Baseyear	Scen. A	Scen. B	Scen. C	Scen. C-BART	
IL	0	0	0	0		0
IN	0	0	0	0		0
MI	3	1	1	1		1
OH	4	0	0	0		0
WI	2	0	0	0		0
Total	9	1	1	1		1
Total	3	•	•	•		•
2012						
IL	0	0	0	0		0
IN	0	0	0	0		0
				0		
MI	3	0	0			0
OH	4	0	0	0		0
WI Tatal	2	0	0	0		0
Total	9	0	0	0		0
2018						
IL	0	0	0	0	0	0
IN	0	0	0	0	0	0
MI	3	0	0	0	0	0
OH	4	0	0	0	0	0
WI	2	0	0	0	0	0
Total	9	0	0	0	0	0
Ozone (75 ppb)				without CAIR	1	Round5 w/ CAIR
2009	Baseyear	Scen. A	Scen. B	Scen. C	Scen. C-BART	
IL	12	6	6	6		4
IN	26	10	9	8		5
MI	21	12	12	12		12
OH	45	27	25	24		21
WI						
	12	10	10	10		10
Total	12 116			1		10 52
		10	10	10		
		10	10	10		
Total		10	10	10		
Total 2012	116	10 65	10 62	10 60		52
Total 2012	116 12	10 65 3	10 62 3	10 60 3		52 1
Total 2012 IL IN	116 12 26	10 65 3 5	10 62 3 4	10 60 3 4		52 1 3
Total 2012 IL IN MI	116 12 26 21	10 65 3 5 9	10 62 3 4 8	10 60 3 4 8	 	52 1 3 6
Total 2012 IL IN MI OH	116 12 26 21 45	10 65 3 5 9 18	10 62 3 4 8 14	10 60 3 4 8 12	 	52 1 3 6 11
Total 2012 IL IN MI OH WI Total	116 12 26 21 45 12	10 65 3 5 9 18 10	10 62 3 4 8 14 9	10 60 3 4 8 12 9	 	52 1 3 6 11 9
Total 2012 IL IN MI OH WI	116 12 26 21 45 12	10 65 3 5 9 18 10	10 62 3 4 8 14 9	10 60 3 4 8 12 9	 	52 1 3 6 11 9
Total 2012 IL IN MI OH WI Total	116 12 26 21 45 12	10 65 3 5 9 18 10	10 62 3 4 8 14 9	10 60 3 4 8 12 9	 	52 1 3 6 11 9
Total 2012 IL IN MI OH WI Total 2018	116 12 26 21 45 12 116	10 65 3 5 9 18 10 45	10 62 3 4 8 14 9 38 38	10 60 3 4 8 12 9 36	 	52 1 3 6 11 9 30
Total 2012 IL IN MI OH WI Total 2018 IL	116 12 26 21 45 12 116 12 12	10 65 3 5 9 18 10 45 0	10 62 3 4 8 14 9 38 38 0	10 60 3 4 8 12 9 36 0	 0	52 1 3 6 11 9 30 30
Total 2012 IL IN MI OH WI Total 2018 IL IN	116 12 26 21 45 12 116 12 12 26	10 65 3 5 9 18 10 45 0 0	10 62 3 4 8 14 9 38 38 0 0 0	10 60 3 4 8 12 9 36 0 0 0	 0 0	52 1 3 6 11 9 30 30
Total 2012 IL IN MI OH WI Total 2018 IL IN MI	116 12 26 21 45 12 116 12 12 26 21	10 65 3 5 9 18 10 45 0 0 0 3	10 62 3 4 8 14 9 38 38 0 0 0 3	10 60 3 4 8 12 9 36 0 0 0 3	 0 0 0 3	52 1 3 6 11 9 30 30 0 0 3


Table 3. Modeling Results: Number of Sites > NAAQS


PM2.5 - Annual			Round 5	without CAIR		Round 5 w/ CAIR
2009	Baseyear	Scen. A	Scen. B	Scen. C	Scen. C-BART	
IL	7	4	4	1		1
IN	6	2	2	0		0
MI	2	2	2	1		1
ОН	26	13	12	5		1
WI	0	0	0	0		0
Total	41	21	20	7		3
2012						
IL	7	3	1	1		0
IN	6	1	1	0		0
MI	2	2	1	1		1
OH	26	12	9	4		0
WI	0	0	0	0		0
Total	<u> </u>	18	12	6		1
Total	41	10	12	0		
2018						
IL	7	3	1	0	0	0
IN	6	1	1	0	0	0
MI	2	2	1	1	1	1
ОН	26	13	8	2	0	0
WI	0	0	0	0	0	0
Total	41	19	11	3	1	1
PM2.5 - Daily						
				without CAIR		Round 5 w/ CAIR
2009	Baseyear	Scen. A	Scen. B	Scen. C	Scen. C-BART	
2009 IL	16	7	Scen. B 7	Scen. C 6		6
2009 IL IN	16 13	7 0	Scen. B 7 0	Scen. C 6 0		6 0
2009 IL IN MI	16 13 14	7 0 10	Scen. B 7 0 9	Scen. C 6 0 9		6 0 5
2009 IL IN MI OH	16 13 14 31	7 0 10 4	Scen. B 7 0 9 3	Scen. C 6 0 9 2		6 0 5 2
2009 IL IN MI OH WI	16 13 14 31 8	7 0 10 4 1	Scen. B 7 0 9 3 1	Scen. C 6 0 9 2 1		6 0 5 2 1
2009 IL IN MI OH	16 13 14 31	7 0 10 4	Scen. B 7 0 9 3	Scen. C 6 0 9 2	 	6 0 5 2
2009 IL IN MI OH WI	16 13 14 31 8	7 0 10 4 1	Scen. B 7 0 9 3 1	Scen. C 6 0 9 2 1	 	6 0 5 2 1
2009 IL IN MI OH WI Total	16 13 14 31 8	7 0 10 4 1	Scen. B 7 0 9 3 1	Scen. C 6 0 9 2 1	 	6 0 5 2 1
2009 IL IN MI OH WI Total 2012	16 13 14 31 8 82	7 0 10 4 1 22	Scen. B 7 0 9 3 1 20	Scen. C 6 0 9 2 1 1 18	 	6 0 5 2 1 14
2009 IL IN MI OH WI Total 2012 IL	16 13 14 31 8 82 16	7 0 10 4 1 22 9 0	Scen. B 7 0 9 3 1 20 6 0	Scen. C 6 0 9 2 1 1 18 8 8 0		6 0 5 2 1 14 6 0
2009 IL IN MI OH WI Total 2012 IL IN MI	16 13 14 31 8 82 16 13 14	7 0 10 4 1 22 9 0 8	Scen. B 7 0 9 3 1 20 6 0 6 0 6	Scen. C 6 0 9 2 1 1 18 8 0 6	 	6 0 5 2 1 14 6
2009 IL IN MI OH WI Total 2012 IL IN NI OH	16 13 14 31 8 82 16 13 14 31	7 0 10 4 1 22 9 0	Scen. B 7 0 9 3 1 20 6 0	Scen. C 6 0 9 2 1 1 18 8 8 0	 	6 0 5 2 1 14 6 6 0 5
2009 IL IN MI OH WI Total 2012 IL IN MI	16 13 14 31 8 82 16 13 14	7 0 10 4 1 22 9 0 8 3	Scen. B 7 0 9 3 1 20 6 0 6 3	Scen. C 6 0 9 2 1 1 18 8 0 6 2	 	6 0 5 2 1 14 6 0 5 1
2009 IL IN MI OH WI Total 2012 IL IN MI OH WI Total	16 13 14 31 8 82 16 13 14 31 8	7 0 10 4 1 22 9 0 8 3 1	Scen. B 7 0 9 3 1 20 6 0 6 0 6 3 1	Scen. C 6 0 9 2 1 1 18 8 0 6 6 2 1	 	6 0 5 2 1 1 14 6 0 5 5 1 1 1
2009 IL IN MI OH WI Total 2012 IL IN MI OH WI Total 2018	16 13 14 31 8 82 16 13 14 31 8 82	7 0 10 4 1 22 9 0 8 3 1 21	Scen. B 7 0 9 3 1 20 6 0 6 3 1 16 	Scen. C 6 0 9 2 1 1 18 8 0 6 2 1 1 17		6 0 5 2 1 14 6 0 5 5 1 1 1 1 3
2009 IL IN MI OH WI Total 2012 IL IN MI OH WI Total 2018 IL	16 13 14 31 8 82 16 13 14 31 8 82 82 16	7 0 10 4 1 22 9 0 8 3 1 21 21 10	Scen. B 7 0 9 3 1 20 6 0 6 3 1 16 6 6	Scen. C 6 0 9 2 1 1 18 8 0 6 6 2 1 1 17 17 8 8	 	6 0 5 2 1 14 6 0 5 5 1 1 1 1 3 5
2009 IL IN MI OH WI Total 2012 IL IN MI OH WI Total UI E 100 100 100 100 100 100 100	16 13 14 31 8 82 16 13 14 31 8 82 16 16 13	7 0 10 4 1 22 9 0 8 3 1 21 21 10 4	Scen. B 7 0 9 3 1 20 6 0 6 3 1 16 6 1 6 1	Scen. C 6 0 9 2 1 18 8 0 6 2 1 17 8 8 1	 	6 0 5 2 1 14 6 0 5 5 1 1 1 1 1 3 5 0
2009 IL IN MI OH WI Total 2012 IL IN MI OH WI Total 2018 IL IN MI IL IN MI OH	16 13 14 31 8 82 16 13 14 31 8 82 16 13 14	7 0 10 4 1 22 9 0 8 3 1 21 21 10 4 8	Scen. B 7 0 9 3 1 20 6 0 6 3 1 16 6 1 6 1 6	Scen. C 6 0 9 2 1 18 8 0 6 2 1 17 17 8 8 1 6	 	6 0 5 2 1 14 6 0 5 1 1 1 1 1 3 5 0 4
2009 IL IN MI OH WI Total 2012 IL IN MI OH WI Total UI E 100 100 100 100 100 100 100	16 13 14 31 8 82 16 13 14 31 8 82 16 16 13	7 0 10 4 1 22 9 0 8 3 1 21 21 10 4	Scen. B 7 0 9 3 1 20 6 0 6 3 1 16 6 1 6 1	Scen. C 6 0 9 2 1 18 8 0 6 2 1 17 8 8 1	 	6 0 5 2 1 14 6 0 5 5 1 1 1 1 1 3 5 0

Worst 20%					201	8	
				Round 5	without CAIR		Round 5 w/ CAIR
Site	Baseline (2000-2004)	2018 URP	Scen. A	Scen. B	Scen. C	Scen. C- BART	
BOWA1	19.86	17.94	19.09	18.87	18.54	18.02	17.94
VOYA2	19.48	17.75	18.60	18.44	18.17	17.77	17.63
SENE1	24.38	21.64	24.02	23.58	23.03	22.38	22.59
ISLE1	21.59	19.43	21.05	20.86	20.62	20.22	20.09
ISLE9	21.59	19.43	20.83	20.58	20.38	19.84	19.84
HEGL1	26.75	23.13	26.24	25.83	24.87	24.23	24.22
MING1	28.15	24.27	27.51	26.98	25.81	24.93	24.74
CACR1	26.36	22.91	25.32	24.80	23.57	22.97	22.44
UPBU1	26.27	22.82	25.31	24.79	23.50	22.79	22.59
MACA1	31.37	26.64	30.11	29.08	27.06	26.24	26.10
DOSO1	29.05	24.69	27.88	26.96	24.36	23.74	23.00
SHEN1	29.31	25.12	28.38	27.65	25.24	24.69	23.92
JARI1	29.12	24.91	28.06	27.21	25.00	24.48	24.06
BRIG1	29.01	25.05	28.10	28.07	26.57	26.25	25.21
LYBR1	24.45	21.48	24.06	23.86	22.58	22.30	21.14
ACAD1	22.89	20.45	22.88	22.76	22.31	22.16	21.49
Best 20%						0	
Dest 20%				Round 5	without CAIR	-	Round 5 w/ CAIR
Site	Baseline (2000-2004)	2018 Max	Scen. A	Scen. B	Scen. C	Scen. C- BART	
BOWA1	6.42	6.42	6.20	6.17	6.16	6.12	6.14
VOYA2	7.09	7.09	6.87	6.83	6.81	6.78	6.75
SENE1	7.14	7.14	7.80	7.78	7.81	7.77	7.71
ISLE1	6.75	6.75	6.77	6.76	6.72	6.67	6.60
ISLE9	6.75	6.75	6.63	6.61	6.58	6.53	6.52
HEGL1	12.84	12.84	12.17	12.20	12.07	11.63	11.66
MING1	14.46	14.46	13.78	13.77	13.70	13.37	13.28
CACR1	11.24	11.24	10.94	10.99	10.97	10.78	10.52
UPBU1	11.71	11.71	11.18	11.23	11.18	10.96	10.73
MACA1	16.51	16.51	16.32	16.21	15.76	15.34	15.25
DOSO1	12.28	12.28	12.02	11.84	11.27	11.03	11.00
SHEN1	10.93	10.93	10.98	10.91	10.25	10.16	9.91
	14.21	14.21	14.19	13.98	13.42	13.21	13.14
JARI1							
		14.33	14.32	14.46	14.22	14.17	13.92
JARI1 BRIG1 LYBR1	14.33 6.37	14.33 6.37	14.32 6.39	14.46 6.38	14.22 6.31	14.17 6.28	13.92 6.14

Table 4. Modeling Results: Future Year Visibility Levels

Appendix I

Scenario B (Legally Enforceable) Controls

NOx - 2009 Point Source Grown and Controlled Emissions by facility for NOX r6s1b_2009 Future Year = 2009STID=17 CYID=57 fcid=057801AAA name=AES DUCK CREEK Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid SCC polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 057801AAA 0001 0001 01 10100202 NOX SCR added by LADCO 17 57 0.8147 0.8416 0.00 SCR 0.8416 0.00STID=17 CYID=143 fcid=143805AAG name=AES ED EDWARDS STATION Base Yr Grown Controlled Base Year Future Year polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype STID CYID fcid stkid dvid prid SCC ctrldes 143805AAG 0001 01 10100202 NOX 3.1522 0.00 0.00 LNB added by LADCO 17 143 0001 3.0515 3.1522 lnb 143805AAG 0001 0003 01 10100202 NOX 6.9419 0.00 0.00 LNB added by LADCO 17 143 7.1708 7.1708 lnb 143 143805AAG 0002 0004 01 10100202 NOX 2.1310 2.2013 2.2013 0.00 0.00 LNB added by LADCO 17 lnb ---fcid 12.1244 12.5243 12.5243 12.5243 12.5243 cyid 12.1244 stid 12.9392 13.3659 13.3659 STID=39 CYID=1 fcid=0701000007 name="DP&L, J.M. STUART GENERATING STATION" Base Yr Grown Controlled Base Year Future Year polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype STID CYID fcid stkid dvid prid SCC ctrldes NOX 6.9756 2.3252 0.95 SCR SCR added by LADCO 39 1 0701000007 R1 B001 B001P1 10100202 6.9860 0.85 B002P1 SCR added by LADCO 39 1 0701000007 R2 B002 10100202 NOX 3.6327 3.6273 1.2091 0.85 0.95 SCR SCR added by LADCO 0701000007 R3 B003 10100202 NOX 5.0133 5.0058 1.6686 0.85 0.95 SCR 39 1 B003P1 0.85 SCR SCR added by LADCO 39 1 0701000007 R4 B004 B004P1 10100202 NOX 7.8493 7.8376 2.6125 0.95 ---fcid 23.4814 23.4464 7.8155 cyid 23.4814 23.4464 7.8155 STID=39 CYID=167 fcid=0684000000 name=MUSKINGUM RIVER POWER PLANT Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid SCC polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes SCR SCR added by LADCO 39 167 0684000000 R1 B001 B001P1 10200501 NOX 0.0017 0.0017 0.0001 0.00 0.95 SCR SCR added by LADCO 0684000000 B002P1 0.95 39 167 R2 B002 10100201 NOX 5.8167 5.8080 0.2904 0.00 0684000000 R2 B002 0.95 SCR SCR added by LADCO 39 167 B002P2 10100501 NOX 0.0000 0.0000 0.0000 0.00 SCR added by LADCO 39 167 0684000000 R3 B003 B003P1 10100201 NOX 7.9017 7.8899 0.3945 0.00 0.95 SCR SCR added by LADCO SCR 39 167 0684000000 R3 B003 B003P2 10100501 NOX 0.0000 0.0000 0.0000 0.00 0.95 SCR SCR added by LADCO 39 167 0684000000 R4 B004 B004P1 10100203 NOX 7.8775 7.8657 0.3933 0.00 0.95 SCR added by LADCO 167 0684000000 R4 B004 B004P2 10100501 NOX 0.0000 0.0000 0.0000 0.00 0.95 SCR 39 39 167 0684000000 R6 B006 B006P1 10100202 NOX 3.8586 3.8528 0.1926 0.00 0.95 SCR SCR added by LADCO SCR SCR added by LADCO 39 167 0684000000 R6 B006 B006P2 10100501 NOX 0.0000 0.0000 0.0000 0.00 0.95 ____ ____ fcid 25.4561 25.4182 1.2709 cyid 25.4561 25.4182 1.2709 9.0864 stid 48.9375 48.8646

STID CYID fcid stkid dv	id prid sco	c polid To	ns/Day Tons/Day	Tons/Day	Control EF	Control EF	ctrltype ctrldes
55 79 241007800 S11 B2	1 01 10100	0202 NOX	2.7972 2.8895	1.6470	0.00 0.43	SCR	SCR added by LADCO
55 79 241007800 S11 B2	2 01 10100	0202 NOX	2.9073 3.0032	1.7118	0.00 0.43	SCR SCR	SCR added by LADCO
55 79 241007800 S12 B2	3 01 10100	0202 NOX	2.3270 2.4038	1.2740	0.00 0.47	SCR	SCR added by LADCO
55 79 241007800 S12 B2	4 01 10100	0202 NOX	2.3427 2.4199	1.2826	0.00 0.47	SCR	Scrubber added by LADCO
fcid		3742 10.7164					
cyid	10.3	3742 10.7164	4 5.9154				
STID=55 CYID=117 fcid=4600330							
	Base		Controlled Base				
				Tons/Dav	Control E.F.	Control EF	
STID CYID fcid stkid dv	rid prid sco	c pond ro	ns/Day Tons/Day	10113/Day	Control El	Control El	ctrltype ctrldes
55 117 460033090 S11 B2	I	c pond 10	1.6197 1.6731	5			51
	3 01 1010	1	5 5	1.0038 3.4789		0 SCR	SCR added by LADCO
55 117 460033090 S11 B2	3 01 1010 4 01 1010	00203 NOX	1.6197 1.6731	1.0038	0.00 0.40	0 SCR 8 SCR	51
55 117 460033090 S11 B2 55 117 460033090 S11 B2	3 01 1010 4 01 1010	00203 NOX 00203 NOX	1.6197 1.6731 4.1072 4.2426	1.0038 3.4789	0.00 0.40 0.00 0.18	0 SCR 8 SCR	SCR added by LADCO SCR added by LADCO
55 117 460033090 S11 B2 55 117 460033090 S11 B2 55 117 460033090 S12 B2	3 01 1010 4 01 1010 5 01 1010 	00203 NOX 00203 NOX	1.6197 1.6731 4.1072 4.2426 5.6804 5.8677 	1.0038 3.4789	0.00 0.40 0.00 0.18	0 SCR 8 SCR	SCR added by LADCO SCR added by LADCO
55 117 460033090 S11 B2 55 117 460033090 S11 B2 55 117 460033090 S12 B2	3 01 1010 4 01 1010 5 01 1010 11.4	00203 NOX 00203 NOX 00221 NOX	1.6197 1.6731 4.1072 4.2426 5.6804 5.8677 9.4703	1.0038 3.4789	0.00 0.40 0.00 0.18	0 SCR 8 SCR	SCR added by LADCO SCR added by LADCO
55 117 460033090 S11 B2 55 117 460033090 S11 B2 55 117 460033090 S12 B2 55 117 460033090 S12 B2	3 01 1010 4 01 1010 5 01 1010 11.4 11.4	00203 NOX 00203 NOX 00221 NOX 4072 11.7834	1.6197 1.6731 4.1072 4.2426 5.6804 5.8677 9.4703 4 9.4703	1.0038 3.4789	0.00 0.40 0.00 0.18	0 SCR 8 SCR	SCR added by LADCO SCR added by LADCO
55 117 460033090 S11 B2 55 117 460033090 S11 B2 55 117 460033090 S12 B2 fcid cyid	3 01 1010 4 01 1010 5 01 1010 11.4 11.4	00203 NOX 00203 NOX 00221 NOX 4072 11.7834 4072 11.7834 7814 22.4997	1.6197 1.6731 4.1072 4.2426 5.6804 5.8677 9.4703 4 9.4703	1.0038 3.4789	0.00 0.40 0.00 0.18	0 SCR 8 SCR	SCR added by LADCO SCR added by LADCO

NOx - 2012 Point Source Grown and Controlled Emissions by facility for NOX r6s1b_2012 Future Year = 2012STID=17 CYID=33 fcid=033801AAA name=AMEREN ENERGY GENERATING CO Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 033801AAA 0005 0.00 SCR SCR added by LADCO 17 33 0005 01 10100202 NOX 1.6420.9357 0.500 1.871 17 33 033801AAA 0006 0006 01 10100202 NOX 2.1162.413 1.2063 0.00 0.500 SCR SCR added by LADCO ---fcid 3.758 4.284 2.1420 3.758 4.284 2.1420 cyid STID=17 CYID=57 fcid=057801AAA name=AES DUCK CREEK Base Yr Grown Controlled Base Year Future Year scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype STID CYID fcid stkid dvid prid ctrldes 17 57 057801AAA 0001 0001 01 10100202 NOX 0.815 0.9290.9288 0.00 0.000 SCR SCR added by LADCO STID=17 CYID=79 fcid=079808AAA name=AMEREN ENERGY GENERATING CO Base Yr Grown Controlled Base Year Future Year scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF STID CYID fcid stkid dvid prid ctrltype ctrldes 0003 0.00 0.000 SCR SCR added by LADCO 17 79 079808AAA 0003 01 10100202 NOX 6.7357.678 7.6780 079808AAA 0012 SCR SCR added by LADCO 17 79 0013 01 10100501 NOX 5.936 5.378 5.3781 0.00 0.000 ----12.671 13.05613.0561 fcid 13.05613.0561 cyid 12.671STID=17 CYID=97 fcid=097190AAC name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes STID CYID fcid stkid dvid prid SCC 17 97 097190AAC 0016 0031 02 10100401 NOX 0.000 0.000 0.0000 0.00 0.999SHUTDOWN SCR added by LADCO STID=17 CYID=137 fcid=137805AAA name=AMEREN ENERGY GENERATING CO Base Yr Grown Controlled Base Year Future Year scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes STID CYID fcid stkid dvid prid 17 137 137805AAA 0003 0003 01 10100202 NOX 0.00 5.3566.106 6.1058 0.000 LNB LNB added by LADCO STID=17 CYID=143 fcid=143805AAG name=AES ED EDWARDS STATION Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 0.00 LNB added by LADCO 17 143 143805AAG 0001 0001 01 10100202 NOX 3.052 3.4793.4789 0.000 lnb 17 143 143805AAG 0001 0003 01 10100202 NOX 6.942 7.914 7.9141 0.00 0.000 lnb LNB added by LADCO LNB added by LADCO 17 143 143805AAG 0002 0004 01 10100202 NOX 2.131 2.4292.42940.00 0.000 lnb ----13.822 fcid 12.124 13.8224 cyid 12.124 13.822 13.8224

Base Year = 2002

STID=17 CYID=167 fcid=167120AAO name=CITY WATER LIGHT & POWER Base Yr Grown Controlled Base Year Future Year
STID CYID feid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 167 167120AAO 0010 0012 01 10100203 NOX 6.527 7.441 0.0074 0.00 0.999 SHUTDOWN SHUTDOWN added by LADCO 17 167 167120AAO 0010 0013 01 10100203 NOX 2.646 3.017 0.0030 0.00 0.999 SHUTDOWN SHUTDOWN added by LADCO
fcid 9.173 10.458 0.0105 cyid 9.173 10.458 0.0105
STID=17 CYID=179 fcid=179801AAA name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 179 179801AAA 0018 0029 01 10100203 NOX 22.429 25.570 1.2785 0.00 0.950 SCR SCR added by LADCO 17 179 179801AAA 0018 0031 01 10100203 NOX 38.993 44.454 2.2227 0.00 0.950 SCR SCR added by LADCO
fcid 61.422 70.024 3.5012 cyid 61.422 70.024 3.5012
STID=17 CYID=197 fcid=197809AAO name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year
STID CYID feid stkid dvid prid see polid Tons/Day Tons/Day Tons/Day Control EF Control EF etrltype etrldes
17 197 197809AAO 0032 0033 02 10100604 NOX 0.000 0.000 0.000 0.000 0.800 SCR SCR added by LADCO
STID=17 CYID=197 fcid=197810AAK name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year
STID CYID feid stkid dvid prid see polid Tons/Day Tons/Day Tons/Day Control EF Control EF etrltype etrldes
17 197 197810AAK 0011 0016 02 10100222 NOX 5.731 6.534 3.9203 0.00 0.400 SCR SCR added by LADCO 17 197 197810AAK 0011 0016 03 10100501 NOX 0.000 0.000 0.000 0.400 SCR SCR added by LADCO
17 197 197810AAK 0013 0010 02 10100223 NOX 8.598 9.802 0.0098 0.00 0.999 SHUTDOWN SCR added by LADCO
17 197 197810AAK 0013 0010 03 10100501 NOX 0.000 0.000 0.000 0.000 0.999 SHUTDOWN SCR added by LADCO 17 197 197810AAK 0007 0012 02 10100223 NOX 10.974 12.511 0.0125 0.00 0.999 SHUTDOWN SCR added by LADCO
17 197 197810AAK 0007 0012 03 10100501 NOX 0.000 0.000 0.000 0.00 0.999 SHUTDOWN SCR added by LADCO
fcid 25.303 28.847 3.9426
cyid 25.303 28.847 3.9426
stid 130.622 147.527 43.5096
STID=27 CYID=61 fcid=2706100004 name=Minnesota Power Inc - Boswell Energy Ctr Base Yr Grown Controlled Base Year Future Year
STID CYID feid stkid dvid prid see polid Tons/Day Tons/Day Tons/Day Control EF Control EF etrltype etrldes
27 61 2706100004 SV003 EU003 001 10100226 NOX 13.661 14.142 2.8284 0.00 0.800 SCR SCR added by LADCO 27 61 2706100004 SV003 EU003 002 10100501 NOX 0.000 0.000 0.000 0.800 SCR SCR added by LADCO
fcid 13.661 14.142 2.8284 cyid 13.661 14.142 2.8284
STID=27 CYID=109 fcid=2710900011 name=Rochester Public Utilities - Silver Lake
Base Yr Grown Controlled Base Year Future Year

STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes

27 109 2710900011 SV003 EU004 001 10100202 NOX 2.079 2.152 1.2911 0.00 0.400 SNCR SCR added by LADCO 15.739 16.294 4.1195 stid STID=39 CYID=1 fcid=0701000007 name="DP&L, J.M. STUART GENERATING STATION" Base Yr Grown Controlled Base Year Future Year STID CYID scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes fcid stkid dvid prid 39 1 0701000007 R1 B001 B001P1 10100202 NOX 6.986 7.296 2.4319 0.85 0.950 SCR SCR added by LADCO B002 SCR SCR added by LADCO 39 1 0701000007 R2 B002P1 10100202 NOX 3.633 3.7941.2646 0.85 0.950 39 1 0701000007 R3 B003 B003P1 10100202 NOX 5.013 5.2351.7452 0.85 0.950 SCR SCR added by LADCO 1 0701000007 R4 B004 B004P1 10100202 NOX 7.849 2.7324 SCR SCR added by LADCO 39 8.197 0.85 0.950 _____ fcid 23.481 24.5228.1740 24.5228.1740 cyid 23.481 STID=39 CYID=31 fcid=0616000000 name=CONESVILLE POWER PLANT Base Yr Grown Controlled Base Year Future Year STID CYID stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes fcid 39 31 0616000000 R4 B004 B004P1 10100212 NOX 20.852 21.776 SCR added by LADCO 1.0888 0.00 0.950 SCR STID=39 CYID=167 fcid=0684000000 name=MUSKINGUM RIVER POWER PLANT Base Yr Grown Controlled Base Year Future Year STID CYID polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes fcid stkid dvid prid SCC 39 167 0684000000 R1 B001P1 10200501 0.002 0.002 0.0001 0.00 0.950 SCR SCR added by LADCO B001 NOX 167 0684000000 R2 B002 B002P1 10100201 NOX 5.817 6.074 0.3037 0.00 0.950 SCR SCR added by LADCO 39 167 0684000000 B002 B002P2 10100501 NOX 0.000 0.000 0.0000 0.00 0.950 SCR SCR added by LADCO 39 R2 0684000000 R3 B003 B003P1 10100201 NOX 7.902 8.252 0.00 0.950 SCR SCR added by LADCO 39 167 0.4126 SCR SCR added by LADCO 0684000000 R3 B003 B003P2 10100501 NOX 0.000 0.000 0.00 0.950 39 167 0.0000 B004P1 SCR SCR added by LADCO 167 0684000000 R4 B004 10100203 NOX 7.877 8.227 0.4113 0.00 0.950 39 SCR SCR added by LADCO 39 167 0684000000 R4 B004 B004P2 10100501 NOX 0.000 0.000 0.0000 0.00 0.950 SCR SCR added by LADCO 39 167 0684000000 R6 B006 B006P1 10100202 NOX 3.859 4.030 0.2015 0.00 0.950 39 167 0684000000 R6 B006 B006P2 10100501 NOX 0.000 0.000 0.0000 0.00 0.950 SCR SCR added by LADCO ____ fcid 25.456 26.5841.3292 cyid 25.456 26.584 1.3292 72.882 10.5920 stid 69.789 STID=55 CYID=79 fcid=241007690 name=WIS ELECTRIC POWER OAK CREEK STATION Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid SCC polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 55 79 241007690 S13 B25 01 10100202 NOX 4.755 5.4213.0898 0.00 0.430 SCR SCR added by LADCO 79 241007690 S13 B26 01 10100202 NOX 3.277 3.736 2.2045 0.00 0.410 SCR SCR added by LADCO 55 SCR added by LADCO 79 241007690 S14 B27 01 10100212 NOX 3.333 3.800 2.8499 0.00 0.250 SCR 55 79 B28 01 SCR SCR added by LADCO 55 241007690 S14 10100212 NOX 3.384 3.857 2.9316 0.00 0.240 14.749 16.814 11.0757 fcid

STID=55 CYID=79 fcid=241007800 name=WIS ELECTRIC POWER VALLEY STATION

						Base Yr	Grow	n Control	led Base	Year Futu	re Year			
STIE) CY	YID fcid	stkid	dvid	prid	SCC	polid	Tons/Day	Tons/Day	Tons/Day	Control EF	Control EF	ctrltype ctrldes	
					1		1	5	5	5			51	
55	79	241007800	S11	B21	01	10100202	NOX	K 2.797	3.189	1.8177	0.00 0.430	SCR	SCR added by LADCO)
55	79	241007800	S11	B22	01	10100202	NOX	K 2.907	3.314	1.8893	0.00 0.430	SCR	SCR added by LADCO	
55	79	241007800	S12	B23	01	10100202	NOX	K 2.327	2.653	1.4061	0.00 0.470	SCR	SCR added by LADCO	i i
55	79	241007800	S12	B24	01	10100202	NOX	K 2.343	2.671	1.4155	0.00 0.470	SCR	Scrubber added by LA	DCO
fcid						10.374	11.82	6.5285	i i					
cyid						25.123	28.6	41 17.604	12					
•														

STID=55 CYID=117 fcid=460033090 name=WP & L Alliant Energy - Edgewater Gen Station Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 55 117 460033090 SCR added by LADCO S11 B23 01 10100203 NOX 1.620 1.846 1.1079 0.00 0.400 SCR SCR added by LADCO 55 117 460033090 SCR S11 B24 01 10100203 NOX 4.107 4.6823.8395 0.00 0.180 SCR added by LADCO 117 460033090 S12 B25 01 10100221 NOX 5.680 6.476 5.5045 0.00 0.150 SCR 55 ----_____ ---------------fcid 11.407 13.005 10.4519 cyid 11.407 13.005 10.4519 stid 36.530 41.646 28.0562 252.681 278.349 86.2773

NOx 2018 Point Source Grown and Controlled Emissions by facility for NOX r6s1b_2018 Future Year = 2018STID=17 CYID=31 fcid=031600AIN name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 031600AIN 0.00 SCR SCR added by LADCO 17 31 0010 0013 01 10100226 NOX 2.283 2.5921.5550 0.400 17 31 031600AIN 0010 0013 02 10100601 NOX 0.000 0.000 0.0000 0.00 0.400 SCR SCR added by LADCO SCR SCR added by LADCO 17 31 031600AIN 0012 0016 01 10100226 NOX 3.991 4.531 2.7184 0.00 0.400 17 31 031600AIN 0012 0016 02 10100601 NOX 0.000 0.000 0.0000 0.00 0.400 SCR SCR added by LADCO ---fcid 6.274 7.122 4.27346.274 7.122 4.2734 cyid STID=17 CYID=33 fcid=033801AAA name=AMEREN ENERGY GENERATING CO Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid SCC polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 17 33 033801AAA 0005 0005 01 10100202 NOX 1.6421.863 0.9317 0.00 0.500 SCR SCR added by LADCO 33 033801AAA 0006 0006 01 10100202 NOX 2.116 2.402 1.2012 0.00 0.500 SCR SCR added by LADCO 17 ----3.758 4.2662.1329 fcid 3.758 4.266 2.1329 cyid STID=17 CYID=57 fcid=057801AAA name=AES DUCK CREEK Base Yr Grown Controlled Base Year Future Year STID CYID fcid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes stkid dvid prid 17 57 057801AAA 0001 0001 01 10100202 NOX 0.00 0.000 SCR SCR added by LADCO 0.815 0.925 0.9249 STID=17 CYID=79 fcid=079808AAA name=AMEREN ENERGY GENERATING CO Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid SCC polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 17 79 079808AAA 0003 0003 01 10100202 NOX 6.735 7.645 7.6453 0.00 0.000 SCR SCR added by LADCO SCR 79 079808AAA 0012 0013 01 10100501 NOX 5.9363.984 3.9838 0.00 0.000 SCR added by LADCO 17 ----11.629 fcid 12.671 11.6291 11.629 11.6291 cyid 12.671 STID=17 CYID=97 fcid=097190AAC name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 0.00 SHUTDOWN SCR added by LADCO 17 97 097190AAC 0016 0031 02 10100401 NOX 0.000 0.000 0.0000 0.999STID=17 CYID=137 fcid=137805AAA name=AMEREN ENERGY GENERATING CO Base Yr Grown Controlled Base Year Future Year polid Tons/Day Tons/Day Tons/Day STID CYID fcid stkid dvid prid SCC Control EF Control EF ctrltype ctrldes 17 137 137805AAA 0003 0003 01 0.00 LNB added by LADCO 10100202 NOX 5.3566.0806.0798 0.000 LNB

Base Year = 2002

STID=17 CYID=143 fcid=143805AAG name=AES ED EDWARDS STATION
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 143 143805AAG 0001 0001 01 10100202 NOX 3.052 3.464 3.4641 0.00 0.000 lnb LNB added by LADCO 17 143 143805AAG 0001 0003 01 10100202 NOX 6.942 7.880 7.8804 0.00 0.000 lnb LNB added by LADCO 17 143 143805AAG 0002 0004 01 10100202 NOX 2.131 2.419 2.4191 0.00 0.000 lnb LNB added by LADCO
fcid 12.124 13.764 13.7636 cyid 12.124 13.764 13.7636
STID=17 CYID=167 fcid=167120AAO name=CITY WATER LIGHT & POWER Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 167 167120AAO 0010 0012 01 10100203 NOX 6.527 7.410 0.0074 0.00 0.999 SHUTDOWN SHUTDOWN added by LADCO 17 167 167120AAO 0010 0013 01 10100203 NOX 2.646 3.004 0.0030 0.00 0.999 SHUTDOWN SHUTDOWN added by LADCO
fcid 9.173 10.414 0.0104 cyid 9.173 10.414 0.0104
STID=17 CYID=179 fcid=179801AAA name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year
STID CYID feid stkid dvid prid sec polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 179 179801AAA 0018 0029 01 10100203 NOX 22.429 25.462 1.2731 0.00 0.950 SCR SCR added by LADCO 17 179 179801AAA 0018 0031 01 10100203 NOX 38.993 44.265 2.2132 0.00 0.950 SCR SCR added by LADCO
fcid 61.422 69.726 3.4863 cyid 61.422 69.726 3.4863
STID=17 CYID=197 fcid=197809AAO name=MIDWEST GENERATION LLC
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 197 197809AAO 0032 0033 02 10100604 NOX 0.000 0.000 0.000 0.00 0.800 SCR SCR added by LADCO
STID=17 CYID=197 fcid=197810AAK name=MIDWEST GENERATION LLC
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 197 197810AAK 0011 0016 02 10100222 NOX 5.731 6.506 3.9036 0.00 0.400 SCR SCR added by LADCO 17 197 197810AAK 0011 0016 03 10100501 NOX 0.000 0.000 0.000 0.400 SCR SCR added by LADCO 17 197 197810AAK 0013 0010 02 10100223 NOX 8.598 9.760 0.0098 0.00 0.999 SHUTDOWN SCR added by LADCO 17 197 197810AAK 0013 0010 03 10100501 NOX 0.000 0.000 0.000 0.999 SHUTDOWN SCR added by LADCO 17 197 197810AAK 0013 0010 03 10100223 NOX 0.000 0.000 0.999 SHUTDOWN SCR added by LADCO 17 197 197810AAK 0007 012 02 10100223 NOX 10.974 12.458 0.0125 0.00 0.999 SHUTDOWN SCR added by LADCO 17 197 1
fcid25.30328.7243.9258cyid25.30328.7243.9258stid136.896152.64946.2263

STID=18 CYID=147 fcid=00020 name=INDIANA MICHIGAN POWER-ROCKPORT Base Yr Grown Controlled Base Year Future Year STID CYID fcid polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes stkid dvid prid SCC 01 NOX 23.226 25.291 1.2646 0.00 0.950 SCR SCR added by LADCO 18 147 00020 1 001 10100222 1 001 02 10100501 NOX 0.000 0.000 0.0000 SCR 18 147 00020 0.00 0.950 SCR added by LADCO ----23.226 25.291 fcid 1.2646 cyid 23.226 25.291 1.2646 stid 23.226 25.291 1.2646 STID=27 CYID=61 fcid=2706100004 name=Minnesota Power Inc - Boswell Energy Ctr Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 2706100004 SV003 EU003 001 10100226 NOX 13.661 0.00 0.800 SCR SCR added by LADCO 27 61 15.733 3.1466 27 61 2706100004 SV003 EU003 002 10100501 NOX 0.000 0.000 0.0000 0.00 0.800 SCR SCR added by LADCO ---fcid 13.661 15.733 3.1466 13.661 15.733 3.1466 cyid STID=27 CYID=109 fcid=2710900011 name=Rochester Public Utilities - Silver Lake Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 109 2710900011 SV003 EU004 001 10100202 NOX 2.079 2.394 1.4363 0.00 0.400 SNCR SCR added by LADCO 27 --------stid 15.739 18.127 4.5830 STID=39 CYID=1 fcid=0701000007 name="DP&L, J.M. STUART GENERATING STATION" Base Yr Grown Controlled Base Year Future Year STID CYID fcid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes stkid dvid prid 0.950 SCR 1 0701000007 R1 B001 B001P1 10100202 NOX 6.986 7.607 2.5358 0.85 SCR added by LADCO 39 3.633 SCR added by LADCO 39 1 0701000007 R2 B002 B002P1 10100202 NOX 3.956 1.3186 0.85 0.950 SCR SCR added by LADCO 0701000007 R3 B003 B003P1 10100202 NOX 5.013 5.4591.8197 0.85 0.950 SCR 39 1 1 070100007 R4 B004 7.849 2.8491 SCR SCR added by LADCO 39 B004P1 10100202 NOX 8.547 0.85 0.950 ----_____ 23.481 25.570fcid 8.5232 cyid 23.481 25.570 8.5232 STID=39 CYID=31 fcid=0616000000 name=CONESVILLE POWER PLANT Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 31 0616000000 R4 B004 B004P1 10100212 NOX 20.852 SCR added by LADCO 39 22.7061.1353 0.000.950 SCR STID=39 CYID=167 fcid=0684000000 name=MUSKINGUM RIVER POWER PLANT Base Yr Grown Controlled Base Year Future Year scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype STID CYID fcid stkid dvid prid ctrldes 39 167 0684000000 R1 B001 B001P1 10200501 NOX 0.00 SCR added by LADCO 0.0020.0020.0001 0.950 SCR

39	167	0684000000	R2	B002	B002P1	10100201	NOX	5.817	6.334	0.3167	0.00	0.950	SCR	SCR added by LADCO
39	167	0684000000	R2	B002	B002P2	10100501	NOX	0.000	0.000	0.0000	0.00	0.950	SCR	SCR added by LADCO
39	167	0684000000	R3	B003	B003P1	10100201	NOX	7.902	8.604	0.4302	0.00	0.950	SCR	SCR added by LADCO
39	167	0684000000	R3	B003	B003P2	10100501	NOX	0.000	0.000	0.0000	0.00	0.950	SCR	SCR added by LADCO
39	167	0684000000	R4	B004	B004P1	10100203	NOX	7.877	8.578	0.4289	0.00	0.950	SCR	SCR added by LADCO
39	167	0684000000	R4	B004	B004P2	10100501	NOX	0.000	0.000	0.0000	0.00	0.950	SCR	SCR added by LADCO
39	167	0684000000	R6	B006	B006P1	10100202	NOX	3.859	4.202	0.2101	0.00	0.950	SCR	SCR added by LADCO
39	167	0684000000	R6	B006	B006P2	10100501	NOX	0.000	0.000	0.0000	0.00	0.950	SCR	SCR added by LADCO
fcid					25	5.456 27.7	20 1.3	3860						

cyid	25.456	27.720	1.3860
stid	69.789	75.996	11.0445

STID=54 CYID=39 fcid=0006 name=APPALACHIAN POWER - KANAWHA RIVER PLANT

					Base Y	r Gro	wn Contro	olled	Base Year	Future	e Year			
STID	C	YID fcid	stki	d dvid	prid scc	polid	Tons/Day	Tons	/Day Ton	is/Day	Control EF	Control I	EF ctrltype	ctrldes
					-	-			·					
54	39	0006	012	001 99	10100202	NOX	4.829	5.258	2.6291	0.00	0.500	SCR	Scrubber added	by LADCO
54	39	0006	012	002 99	10100202	NOX	4.921	5.359	2.6794	0.00	0.500	SCR	Scrubber added	by LADCO
														•
fcid					9.750) 10.6	17 5.308	5						
cyid					9.75	0 10.6	617 5.308	35						
stid					9.750) 10.6	17 5.308	5						
fcid cyid stid					9.75	0 10.0	5.308	35						

STID=55 CYID=79 fcid=241007690 name=WIS ELECTRIC POWER OAK CREEK STATION

						Base Yr	Grow	n Contro	lled Base	Year Futu	re Year			
STIE) C	YID fcid	stkid	dvid	prid	scc	polid	Tons/Day	Tons/Day	Tons/Day	Contr	rol EF	Control EF	ctrltype ctrldes
					•		•	Ũ	0	Ŭ				
55	79	241007690	S13	B25	01	10100202	NOX	K 4.755	5.398	3.0766	0.00	0.430	SCR	SCR added by LADCO
55	79	241007690	S13	B26	01	10100202	NOX	X 3.277	3.720	2.1951	0.00	0.410	SCR	SCR added by LADCO
55	79	241007690	S14	B27	01	10100212	NOX	X 3.333	3.784	2.8378	0.00	0.250	SCR	SCR added by LADCO
55	79	241007690	S14	B28	01	10100212	NOX	K 3.384	3.841	2.9191	0.00	0.240	SCR	SCR added by LADCO
														0

fcid

14.749 16.743 11.0285

STID=55 CYID=79 fcid=241007800 name=WIS ELECTRIC POWER VALLEY STATION

Base Yr Grown Controlled Base Year Future Year

STIE) CY	ID fcid	stkid	dvid	prid	scc	polid	Tons/Day	Tons/Day	Tons/Day	Cont	trol EF	Control EF	ctrltype	ctrldes
55	79	241007800	S11	B21	01	10100202	NOX	K 2.797	3.175	1.4289	0.00	0.550	SCR	SCR added by	LADCO
55	79	241007800	S11	B22	01	10100202			3.300	1.4852	0.00	0.550	SCR	SCR added by	
55	79	241007800	S12	B23	01	10100202	NOX	K 2.327	2.642	1.1887	0.00	0.550	SCR	SCR added by	LADCO
55	79	241007800	S12	B24	01	10100202	NOX	K 2.343	2.659	1.1967	0.00	0.550	SCR	SCR added by	LADCO
fcid						10.374	11.77	7 5.299	5						
cyid						25.123	28.5	19 16.32	81						

 STID=55 CYID=117 fcid=460033090 name=WP & L Alliant Energy - Edgewater Gen Station

 Base Yr
 Grown
 Controlled
 Base Year
 Future Year

 STID
 CYID
 fcid
 stkid
 dvid
 prid
 scc
 polid
 Tons/Day
 Tons/Day
 Control EF
 Control EF
 ctrltype
 ctrldes

 55
 117
 460033090
 S11
 B23
 01
 10100203
 NOX
 1.620
 1.839
 1.1032
 0.00
 0.400
 SCR
 SCR added by LADCO

55	117	460033090	S11	B24	01	10100203	NOX	4.107	4.662	3.8232	0.00	0.180	SCR	SCR added by LADCO
55	117	460033090	S12	B25	01	10100221	NOX	5.680	6.448	5.4811	0.00	0.150	SCR	SCR added by LADCO
														-
fcid						11.407	12.949	10.4074						
cyid						11.407	12.949	10.4074						
stid						36.530	41.469	26.7355						
							= ====	==== =	=====	====				
						291.931	324.149	95.1624						

SO2 - 2009 Point Source Grown and Controlled Emissions by facility for SO2 r6s1b_2009 Base Year = 2002Future Year = 2009STID=19 CYID=115 fcid=58-07-001 name=MIDAMERICAN ENERGY CO. - LOUISA STATION Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 19 115 58-07-001 117487 147281 99 10100222 SO2 33.664 34.774 3.47740.0 0.90 SCRUBBER Scrubber added by LADCO STID=21 CYID=161 fcid=2116100009 name=EAST KY POWER COOP Base Yr Grown Controlled Base Year Future Year STID CYID fcid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes stkid dvid 10100202 SO2 0.90 SCRUBBER Scrubber added by LADCO 161 2116100009 1 001 99 42.166 42.103 4.2103 0.0 21 21 161 2116100009 2 002 99 10100212 SO2 55.38555.303 5.5303 0.0 0.90 SCRUBBER Scrubber added by LADCO ---fcid 97.551 97.406 9.7406 97.406 9.7406 cyid 97.551 stid 97.551 97.406 9.7406 STID=27 CYID=141 fcid=2714100004 name=NSP - Sherburne Generating Plant Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes EU001 001 10100222 SO2 16.765 0.3 SCRUBBER Scrubber added by LADCO 27 141 2714100004 SV001 16.987 3.6401 0.85 27 141 2714100004 SV001 EU002 001 10100222 SO2 22.549 22.848 4.8959 0.3 0.85 SCRUBBER Scrubber added by LADCO --------fcid 39.314 39.834 8.5360 8.5360 39.314 39.834 cyid 39.834 stid 39.314 8.5360 STID=54 CYID=51 fcid=0005 name=OHIO POWER - MITCHELL PLANT Base Yr Grown Controlled Base Year Future Year polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype STID CYID fcid prid scc ctrldes stkid dvid 0.0 SCRUBBER Scrubber added by LADCO 54 51 0005 012 001 99 10100202 SO2 17.775 17.748 1.7748 0.90 51 012 002 99 10100202 SO2 5.6800.5680 0.0 0.90 SCRUBBER Scrubber added by LADCO 54 0005 5.68923.428 fcid 23.463 2.3428 cyid 23.46323.4282.3428 STID=54 CYID=53 fcid=0009 name=APPALACHIAN POWER - MOUNTAINEER PLANT Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 10100202 SO2 11.196 11.179 1.1179 54 53 0009 001 001 99 0.0 0.90 SCRUBBER Scrubber added by LADCO STID=54 CYID=79 fcid=0006 name=APPALACHIAN POWER - JOHN E AMOS PLANT

Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 1

54	79	0006	012	001	99	10100202	SO2	79.635	79.516	7.9516	0.0	0.90	SCRUBBER Scrubber added by LADCO
54	79	0006	003	003	99	10100202	SO2	139.377	139.169	13.9169	0.0	0.90	SCRUBBER Scrubber added by LADCO
									-				·
fcid						219.01	12 218	8.685 2	1.8685				
cyid stid						219.0	12 21	8.685 2	21.8685				
stid						253.67	71 253	3.293 2	5.3293				
						=====	=== :		== ====				
						424.200	425.	307 47.	0832				

SO2 - 2012 Point Source Grown and Controlled Emissions by facility for SO2 r6s1b_2012 Base Year = 2002 Future Year = 2012
STID=17 CYID=31 fcid=031600AMI name=MIDWEST GENERATION LLC
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 31 031600AMI 0007 0010 01 10100226 SO2 16.13 18.39 1.839 0.0 0.900 SCRUBBER Scrubber added by LADCO
STID=17 CYID=97 fcid=097190AAC name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year
STID CYID feid stkid dvid prid sec polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
1797097190AAC001800330110100226SO224.1427.522.7520.00.900SCRUBBERScrubber added by LADCO1797097190AAC002100360110100226SO219.2321.922.1920.00.900SCRUBBERScrubber added by LADCO1797097190AAC001600310110100203SO24.595.240.0050.00.999SHUTDOWNScrubber added by LADCO
fcid 47.96 54.68 4.950 cyid 47.96 54.68 4.950
STID=17 CYID=125 fcid=125804AAB name=DYNEGY MIDWEST GENERATION INC Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 125 125804AAB 0019 0023 01 10100202 SO2 22.34 25.47 3.821 0.0 0.850 SCRUBBER Scrubber added by LADCO
17 125 125804AAB 0019 0023 01 10100202 SO2 22.34 25.47 3.821 0.0 0.850 SCRUBBER Scrubber added by LADCO STID=17 CYID=127 fcid=127855AAC name=ELECTRIC ENERGY INC
17 125 125804AAB 0019 0023 01 10100202 SO2 22.34 25.47 3.821 0.0 0.850 SCRUBBER Scrubber added by LADCO
17 125 125804AAB 0019 0023 01 10100202 SO2 22.34 25.47 3.821 0.0 0.850 SCRUBBER Scrubber added by LADCO STID=17 CYID=127 fcid=127855AAC name=ELECTRIC ENERGY INC Base Yr Grown Controlled Base Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrldes 17 127 127855AAC 0001 001 01 10100222 SO2 11.83 13.48 13.482 0.0 0.000 LNB LNB added by LADCO
17125125804AAB001900230110100202SO222.3425.473.8210.00.850SCRUBBERScrubber added by LADCOSTID=17CYID=127fcid=127855AACname=ELECTRICENERGY INCBase YrGrownControlledBase YearFuture YearSTIDCYIDfcidstkiddvidpridsccpolidTons/DayTons/DayControl EFControl EFctrldes17127127855AAC00010010110100222SO211.8313.4813.4820.00.000LNBLNB added by LADCO17127127855AAC000100020110100222SO211.4813.0913.0850.00.000LNBLNB added by LADCO
17 125 125804AAB 0019 0023 01 10100202 SO2 22.34 25.47 3.821 0.0 0.850 SCRUBBER Scrubber added by LADCO STID=17 CYID=127 fcid=127855AAC name=ELECTRIC ENERGY INC Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrldes 17 127 127855AAC 0001 001 01 10100222 SO2 11.83 13.48 13.482 0.0 0.000 LNB LNB added by LADCO 17 127 127855AAC 0001 0002 01 10100222 SO2 11.48 13.09 13.085 0.0 0.000 LNB LNB added by LADCO 17 127 127855AAC 0002 0003 01 10100222 SO2 10.25 11.68 11.680 0.0 0.000 LNB LNB added by LADCO 17 127
17 125 125804AAB 0019 0023 01 10100202 SO2 22.34 25.47 3.821 0.0 0.850 SCRUBBER Scrubber added by LADCO STID=17 CYID=127 fcid=127855AAC name=ELECTRIC ENERGY INC Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrldes 17 127 127855AAC 0001 0001 01 10100222 SO2 11.83 13.48 13.482 0.0 0.000 LNB LNB added by LADCO 17 127 127855AAC 0001 0002 01 10100222 SO2 11.48 13.09 13.085 0.0 0.000 LNB LNB added by LADCO 17 127 127855AAC 0002 0003 01 10100222 SO2 10.25 11.68 11.680 0.0 0.000 LNB LNB added by LADCO 17 127
17 125 125804AAB 0019 0023 01 10100202 SO2 22.34 25.47 3.821 0.0 0.850 SCRUBBER Scrubber added by LADCO STID=17 CYID=127 fcid=127855AAC name=ELECTRIC ENERGY INC Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrldes 17 127 127855AAC 0001 001 01 10100222 SO2 11.83 13.48 13.482 0.0 0.000 LNB LNB added by LADCO 17 127 127855AAC 0001 0002 01 10100222 SO2 11.48 13.09 13.085 0.0 0.000 LNB LNB added by LADCO 17 127 127855AAC 0002 0003 01 10100222 SO2 10.25 11.68 11.680 0.0 0.000 LNB LNB added by LADCO 17 127 127855AAC 0002
17 125 125804AAB 0019 0023 01 10100202 SO2 22.34 25.47 3.821 0.0 0.850 SCRUBBER Scrubber added by LADCO STID=17 CYID=127 fcid=127855AAC name=ELECTRIC ENERGY INC Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrldes 17 127 127855AAC 0001 0001 01 10100222 SO2 11.83 13.48 13.482 0.0 0.000 LNB LNB added by LADCO 17 127 127855AAC 0001 0002 01 10100222 SO2 11.48 13.09 13.085 0.0 0.000 LNB LNB added by LADCO 17 127 127855AAC 0002 0003 01 10100222 SO2 10.25 11.68 11.680 0.0 0.000 LNB LNB added by LADCO 17 127
17 125 125804AAB 0019 0023 01 10100202 SO2 22.34 25.47 3.821 0.0 0.850 SCRUBBER Scrubber added by LADCO STID=127 fcid=127855AAC name=ELECTRIC ENERGY INC Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrldvs 17 127 127855AAC 0001 0001 01 10100222 SO2 11.83 13.48 13.482 0.0 0.000 LNB LNB added by LADCO 17 127 127855AAC 0001 0002 01 10100222 SO2 11.48 13.09 13.085 0.0 0.000 LNB LNB added by LADCO 17 127 127855AAC 0002 0003 01 10100222 SO2 10.25 11.68 11.680 0.0 0.000 LNB LNB added by LADCO 17 127 127855AAC 0002 0004<
17 125 125804AAB 0019 0023 01 10100202 SO2 22.34 25.47 3.821 0.0 0.850 SCRUBBER Scrubber added by LADCO STID=127 fcid=127855AAC name=ELECTRIC ENERGY INC Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrldvs 17 127 127855AAC 0001 001 01 10100222 SO2 11.83 13.48 13.482 0.0 0.000 LNB LNB added by LADCO 17 127 127855AAC 0001 0002 01 10100222 SO2 11.48 13.09 13.085 0.0 0.000 LNB LNB added by LADCO 17 127 127855AAC 0002 0003 01 10100222 SO2 10.25 11.68 11.680 0.0 0.000 LNB LNB added by LADCO 17 127 127855AAC 0002 0004 </td

STID=17 CYID=135 fc	STID=17 CYID=135 fcid=135803AAA name=AMEREN ENERGY GENERATING CO Base Yr Grown Controlled Base Year Future Year						
STID CYID fcid	stkid dvid pri			Tons/Day Control EF	Control EF ctrl	type ctrldes	
17 135 135803AAA 17 135 135803AAA			32.99 37.61 72.92 83.13	3.7610.00.908.3130.00.90		Scrubber added by LADCO Scrubber added by LADCO	
fcid cyid		105.91 120.74 105.91 120.74	12.074 12.074				

1

STID=17 CYID=157 fcid=157851AAA name=DYNEGY MIDWEST GENERATION INC Base Yr Grown Controlled Base Year Future Year
STID CYID feid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 157 157851AAA 0001 001 01 10100203 SO2 25.14 28.66 4.299 0.0 0.850 SCRUBBER Scrubber added by LADCO 17 157 157851AAA 0002 002 01 10100203 SO2 25.79 29.41 4.411 0.0 0.850 SCRUBBER Scrubber added by LADCO 17 157 157851AAA 0013 001 01 10100202 SO2 27.79 31.68 4.752 0.0 0.850 SCRUBBER Scrubber added by LADCO
fcid78.7289.7513.462cyid78.7289.7513.462
STID=17 CYID=167 fcid=167120AAO name=CITY WATER LIGHT & POWER
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 167 167120AAO 0010 0012 01 10100203 SO2 44.20 50.39 0.050 0.0 0.999 SHUTDOWN Scrubber added by LADCO 17 167 167120AAO 0010 0013 01 10100203 SO2 16.40 18.70 0.019 0.0 0.999 SHUTDOWN Scrubber added by LADCO
fcid 60.61 69.10 0.069 cyid 60.61 69.10 0.069
STID=17 CYID=179 fcid=179801AAA name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year
STID CYID feid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 179 179801AAA 0018 0029 01 10100203 SO2 25.35 28.90 2.890 0.0 0.900 SCRUBBER Scrubber added by LADCO 17 179 179801AAA 0018 0031 01 10100203 SO2 41.57 47.39 4.739 0.0 0.900 SCRUBBER Scrubber added by LADCO
fcid 66.91 76.29 7.629 cyid 66.91 76.29 7.629
STID=17 CYID=197 fcid=197810AAK name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year
STID CYID feid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 197 197810AAK 0013 0010 03 10100501 SO2 0.00 0.000 0.00 0.999 SHUTDOWN Scrubber added by LADCO 17 197 197810AAK 0007 0012 02 10100223 SO2 15.33 17.48 0.017 0.0 0.999 SHUTDOWN Scrubber added by LADCO 17 197 197810AAK 0007 0012 02 10100203 SO2 15.33 17.48 0.017 0.0 0.999 SHUTDOWN Scrubber added by LADCO 17 197 197810AAK 0007 0012 03 10100501 SO2 0.00 0.00 0.00 0.999 SHUTDOWN Scrubber added by LADCO
fcid 15.33 17.48 0.017 cyid 15.33 17.48 0.017 stid 472.19 538.32 110.295
STID=19 CYID=115 fcid=58-07-001 name=MIDAMERICAN ENERGY CO LOUISA STATION Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
19 115 58-07-001 117487 147281 99 10100222 SO2 33.66 38.38 3.838 0.0 0.900 SCRUBBER Scrubber added by LADCO

STID=21 CYID=161 fcid=2116100009 name=EAST KY POWER COOP Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes

21 161 2116100009 1 001 99 10100202 SO2 42.17 44.03 4.403 0.0 0.900 SCRUBBER Scrubber added by LADCO 21 161 2116100009 2 002 99 10100212 SO2 55.39 57.84 5.784 0.0 0.900 SCRUBBER Scrubber added by LADCO
fcid 97.55 101.87 10.187 cyid 97.55 101.87 10.187 stid 97.55 101.87 10.187
STID=27 CYID=61 fcid=2706100004 name=Minnesota Power Inc - Boswell Energy Ctr Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
27 61 2706100004 SV003 EU003 001 10100226 SO2 33.99 35.19 15.081 0.3 0.700 SCRUBBER Scrubber added by LADCO 27 61 2706100004 SV003 EU003 002 10100501 SO2 0.00 0.000 0.3 0.700 SCRUBBER Scrubber added by LADCO
fcid 33.99 35.19 15.081 cyid 33.99 35.19 15.081
STID=27 CYID=109 fcid=2710900011 name=Rochester Public Utilities - Silver Lake Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
27 109 2710900011 SV003 EU004 001 10100202 SO2 7.86 8.13 1.220 0.0 0.850 SCRUBBER Scrubber added by LADCO STID=27 CYID=141 fcid=2714100004 name=NSP - Sherburne Generating Plant Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
27 141 2714100004 SV001 EU001 001 10100222 SO2 16.76 17.36 3.719 0.3 0.850 SCRUBBER Scrubber added by LADCO 27 141 2714100004 SV001 EU002 001 10100222 SO2 22.55 23.34 5.002 0.3 0.850 SCRUBBER Scrubber added by LADCO
fcid39.3140.708.721cyid39.3140.708.721stid81.1684.0225.023
STID=39 CYID=13 fcid=0607130015 name=R. E. BURGER PLANT
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
39 13 0607130015 R6 B011 B011P1 10100202 SO2 29.83 31.15 3.115 0.0 0.900 SCRUBBER Scrubber added by LADCO 39 13 0607130015 R7 B012 B012P1 10100202 SO2 34.77 36.31 3.631 0.0 0.900 SCRUBBER Scrubber added by LADCO
fcid 64.60 67.46 6.746 cyid 64.60 67.46 6.746
STID=39 CYID=31 fcid=0616000000 name=CONESVILLE POWER PLANT Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
39 31 0616000000 R4 B004 B004P1 10100212 SO2 316.00 330.00 33.000 0.0 0.900 SCRUBBER Scrubber added by LADCO
stid 380.60 397.46 39.746

STID=47 CYID=1 fcid=0009 name=TVA BULL RUN FOSSIL PLANT

Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
47 1 0009 S-1 001 99 10100212 SO2 130.81 133.01 13.301 0.0 0.900 SCRUBBER Scrubber added by LADCO
STID=47 CYID=73 fcid=0007 name=TVA JOHN SEVIER FOSSIL PLANT
Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
47 73 0007 S-1A 001 99 10100212 SO2 20.15 20.49 2.049 0.0 0.900 SCRUBBER Scrubber added by LADCO
47 73 0007 S-1B 002 99 10100212 SO2 20.25 20.59 2.059 0.0 0.900 SCRUBBER Scrubber added by LADCO
47 73 0007 S-2A 003 99 10100212 SO2 19.62 19.95 1.995 0.0 0.900 SCRUBBER Scrubber added by LADCO
47 73 0007 S-2B 004 99 10100212 SO2 18.93 19.25 1.925 0.0 0.900 SCRUBBER Scrubber added by LADCO
fcid 78.95 80.28 8.028
cyid 78.95 80.28 8.028
STID=47 CYID=85 fcid=0011 name=TVA JOHNSONVILLE FOSSIL PLANT
Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
47 85 0011 S1-01 001 99 10100212 SO2 17.06 17.35 1.735 0.0 0.900 SCRUBBER Scrubber added by LADCO
47 85 0011 S1-04 004 99 10100212 SO2 19.85 20.18 2.018 0.0 0.900 SCRUBBER Scrubber added by LADCO
47 85 0011 S1-05 005 99 10100212 SO2 24.11 24.52 2.452 0.0 0.900 SCRUBBER Scrubber added by LADCO
fcid 61.02 62.04 6.204
cyid 61.02 62.04 6.204
STID=47 CYID=145 fcid=0013 name=TVA KINGSTON FOSSIL PLANT
Base Yr Grown Controlled Base Year Future Year
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
STID CYID fcidstkid dvidpridsccpolidTons/DayTons/DayControl EFControl EFctrltypectrldes471450013S-10019910100202SO212.6812.891.2890.00.900SCRUBBERScrubber added by LADCO
STIDCYIDfcidstkiddvidpridsccpolidTons/DayTons/DayTons/DayControl EFControl EFctrltypectrldes471450013S-10019910100202SO212.6812.891.2890.00.900SCRUBBERScrubber added by LADCO471450013S-10029910100202SO214.0014.241.4240.00.900SCRUBBERScrubber added by LADCO
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrltype ctrldes 47 145 0013 S-1 001 99 10100202 SO2 12.68 12.89 1.289 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 002 99 10100202 SO2 14.00 14.24 1.424 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 003 99 10100202 SO2 13.80 14.04 1.404 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 003 99 10100202 SO2 13.80 14.04 1.404 0.0 0.900 SCRUBBER Scrubber added by LADCO
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrltype ctrldes 47 145 0013 S-1 001 99 10100202 SO2 12.68 12.89 1.289 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 002 99 10100202 SO2 14.00 14.24 1.424 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 003 99 10100202 SO2 13.80 14.04 1.404 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 003 99 10100202 SO2 12.24 12.44 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 004 99 10100202 SO2<
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrltype ctrldes 47 145 0013 S-1 001 99 10100202 SO2 12.68 12.89 1.289 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 002 99 10100202 SO2 14.00 14.24 1.424 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 003 99 10100202 SO2 13.80 14.04 1.404 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 004 99 10100202 SO2 12.24 12.44 1.244 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 004 99 1010020
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrltype ctrldes 47 145 0013 S-1 001 99 10100202 SO2 12.68 12.89 1.289 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 002 99 10100202 SO2 14.00 14.24 1.424 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 003 99 10100202 SO2 13.80 14.04 1.404 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 004 99 10100202 SO2 12.24 12.44 1.244 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 004 99 10100202 SO2 12.24 12.44 1.244 0.0 0.900 SCRUBBER
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrltype ctrldes 47 145 0013 S-1 001 99 10100202 SO2 12.68 12.89 1.289 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 002 99 10100202 SO2 14.00 14.24 1.424 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 003 99 10100202 SO2 13.80 14.04 1.404 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 004 99 10100202 SO2 12.24 12.44 1.244 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 005 99 10100202 SO2 19.57 19.90 1.990 0.0 0.900 SCRUBBER
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrltype ctrldes 47 145 0013 S-1 001 99 10100202 SO2 12.68 12.89 1.289 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 002 99 10100202 SO2 14.00 14.24 1.424 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 003 99 10100202 SO2 13.80 14.04 1.404 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 004 99 10100202 SO2 12.24 12.44 1.244 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 005 99 10100202 SO2 19.57 19.90 1.990 0.0 0.900 SCRUBBER
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrltype ctrldes 47 145 0013 S-1 001 99 10100202 SO2 12.68 12.89 1.289 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 002 99 10100202 SO2 14.00 14.24 1.424 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 003 99 10100202 SO2 13.80 14.04 1.404 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 004 99 10100202 SO2 12.24 12.44 1.244 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 005 99 10100202 SO2 19.57 19.90 1.990 0.0 0.900 SCRUBBER
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrltype ctrldes 47 145 0013 S-1 001 99 10100202 SO2 12.68 12.89 1.289 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 002 99 10100202 SO2 14.00 14.24 1.424 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 003 99 10100202 SO2 13.80 14.04 1.404 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 004 99 10100202 SO2 12.24 12.44 1.244 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 005 99 10100202 SO2 19.57 19.90 1.990 0.0 0.900 SCRUBBER
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrltype ctrldes 47 145 0013 S-1 001 99 10100202 SO2 12.68 12.89 1.289 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 002 99 10100202 SO2 14.00 14.24 1.424 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 003 99 10100202 SO2 13.80 14.04 1.404 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 004 99 10100202 SO2 12.24 12.44 1.244 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 005 99 10100202 SO2 19.57 19.90 1.990 0.0 0.900 SCRUBBER
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrltype ctrldes 47 145 0013 S-1 001 99 10100202 SO2 12.68 12.89 1.289 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 002 99 10100202 SO2 14.00 14.24 1.424 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 003 99 10100202 SO2 13.80 14.04 1.404 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 004 99 10100202 SO2 12.24 12.44 1.244 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 005 99 10100202 SO2 19.57 19.90 1.990 0.0 0.900 SCRUBBER
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 47 145 0013 S-1 001 99 10100202 SO2 12.68 12.89 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 002 99 10100202 SO2 14.00 14.24 1.424 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 003 99 10100202 SO2 12.24 12.44 1.424 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 005 99 10100202 SO2 12.24 12.44 1.244 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-2 006 99 10100202 SO2 19.57 19.90 0.900 SCRUBBER Scrubber added by LADCO 47 14
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrltype ctrldes 47 145 0013 S-1 001 99 10100202 SO2 12.68 12.89 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 002 99 10100202 SO2 14.00 14.24 1.424 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 003 99 10100202 SO2 12.24 1.244 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-1 004 99 10100202 SO2 12.24 12.44 1.244 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 145 0013 S-2 006 99 10100202 SO2 18.92 19.24 1.924 0.0 0.900 SCRUBBER Scruber added by LADCO

47 165

47 165

47 165

47 165

0025

0025

0025

0025

S-01 001

S-02 004

002

003

S-01

S-02

99

99

99

99

10100212 SO2

10100212 SO2

10100212 SO2

SO2

10100212

13.91

14.87

16.33

20.39

14.14

15.12

16.60

20.73

1.414

1.512

1.660

2.073

0.0

0.0

0.0

0.0

0.900

0.900

0.900

0.900

SCRUBBERScrubber added by LADCOSCRUBBERScrubber added by LADCO

SCRUBBER Scrubber added by LADCO

SCRUBBER Scrubber added by LADCO

cyid 65.49 66.59 6.659 stid 488.04 496.25 49.625
STID=54 CYID=51 fcid=0005 name=OHIO POWER - MITCHELL PLANT
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
54 51 0005 012 001 99 10100202 SO2 17.77 18.56 1.856 0.0 0.900 SCRUBBER Scrubber added by LADCO 54 51 0005 012 002 99 10100202 SO2 5.69 5.94 0.594 0.0 0.900 SCRUBBER Scrubber added by LADCO fcid 23.46 24.50 2.450 cyid 23.46 24.50 2.450
STID=54 CYID=53 fcid=0009 name=APPALACHIAN POWER - MOUNTAINEER PLANT
STID SYCHD-35 Red-0005 halite-AFFALACHIAR FOWER - MOONTAINEER FLANT Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
54 53 0009 001 001 99 10100202 SO2 11.20 11.69 1.169 0.0 0.900 SCRUBBER Scrubber added by LADCO
STID=54 CYID=79 fcid=0006 name=APPALACHIAN POWER - JOHN E AMOS PLANT
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
54 79 0006 012 001 99 10100202 SO2 79.63 83.16 8.316 0.0 0.900 SCRUBBER Scrubber added by LADCO
54 79 0006 012 002 99 10100202 SO2 100.33 104.78 10.478 0.0 0.900 SCRUBBER Scrubber added by LADCO 54 79 0006 003 003 99 10100202 SO2 139.38 145.55 14.555 0.0 0.900 SCRUBBER Scrubber added by LADCO
5
54 79 0006 003 003 99 10100202 SO2 139.38 145.55 14.555 0.0 0.900 SCRUBBER Scrubber added by LADCO fcid 319.35 333.50 33.350 33.350 stid
54 79 0006 003 003 99 10100202 SO2 139.38 145.55 14.555 0.0 0.900 SCRUBBER Scrubber added by LADCO fcid 319.35 333.50 33.350 cyid 319.35 333.50 33.350 stid 354.00 369.69 36.969
54 79 0006 003 003 99 10100202 SO2 139.38 145.55 14.555 0.0 0.900 SCRUBBER Scrubber added by LADCO fcid 319.35 333.50 33.350 33.350 33.350 33.450 33.450 33.450 33.450 33.450 33.450 33.450 33.450 33.450 33.450 33.450 34
54 79 0006 003 003 99 10100202 SO2 139.38 145.55 14.555 0.0 0.900 SCRUBBER Scrubber added by LADCO fcid 319.35 333.50 33.350 33.350 33.350 stid stid 319.35 333.50 33.350 stid 319.35 333.50 369.69 36.969 36.969 stid

SO2 - 2018 Point Source Grown and Controlled Emissions by facility for SO2 r6s1b_2018 Base Year = 2002Future Year = 2018STID=17 CYID=31 fcid=031600AIN name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year STID CYID fcid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype stkid dvid prid ctrldes 17 31 031600AIN 0010 0013 01 10100226 SO2 10.92 12.39 1.239 0.0 0.900 SCRUBBER Scrubber added by LADCO 17 31 031600AIN 0012 0016 01 10100226 SO2 17.69 20.08 2.008 0.0 0.900 SCRUBBER Scrubber added by LADCO ----28.61 32.48 3.248 fcid STID=17 CYID=31 fcid=031600AMI name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year STID CYID fcid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype stkid dvid prid ctrldes 17 31 031600AMI 0007 0010 01 10100226 SO2 16.13 18.31 1.831 0.0 0.900 SCRUBBER Scrubber added by LADCO 44.74 50.79 5.079 cyid STID=17 CYID=79 fcid=079808AAA name=AMEREN ENERGY GENERATING CO Base Yr Grown Controlled Base Year Future Year STID CYID fcid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes stkid dvid prid 10100202 SO2 4.127 0.900 SCRUBBER Scrubber added by LADCO 79 079808AAA 0003 0003 01 36.35 41.27 0.0 17 17 79 079808AAA 0012 0013 01 10100501 SO2 28.99 19.46 1.946 0.0 0.900 SCRUBBER Scrubber added by LADCO --------fcid 65.34 60.72 6.072 60.72 6.072 65.34 cyid STID=17 CYID=97 fcid=097190AAC name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid SCC polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 17 97 097190AAC 0018 0033 01 10100226 SO2 24.1427.402.7400.0 0.900 SCRUBBER Scrubber added by LADCO SCRUBBER Scrubber added by LADCO 97 097190AAC 0021 0036 01 10100226 SO2 19.23 21.83 2.183 0.0 0.900 17 0016 0031 10100203 SO2 4.595.220.005 0.0 0.999SHUTDOWN Scrubber added by LADCO 17 97 097190AAC 01 ____ 47.96 fcid 54.454.928 cyid 47.96 54.454.928STID=17 CYID=125 fcid=125804AAB name=DYNEGY MIDWEST GENERATION INC Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 17 125 125804AAB 0019 0023 01 10100202 SO2 22.3425.363.805 0.0 SCRUBBER Scrubber added by LADCO 0.850 STID=17 CYID=127 fcid=127855AAC name=ELECTRIC ENERGY INC Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes

1

17 127 127855AAC 0002 0003 01 10100222 SO2 10.25 11.63 11.630 0.0 0.000 LNB LNB added by LADCO 17 127 127855AAC 0002 0004 01 10100222 SO2 12.04 13.67 13.673 0.0 0.000 LNB LNB added by LADCO 17 127 127855AAC 0001 0001 01 10100222 SO2 11.83 13.42 1.342 0.0 0.900 SCRUBBER Scrubber added by LADCO 17 127 127855AAC 0001 0001 01 10100222 SO2 11.43 13.42 1.342 0.0 0.900 SCRUBBER Scrubber added by LADCO 17 127 127855AAC 0001 0002 01 10100222 SO2 11.48 13.03 1.303 0.0 0.900 SCRUBBER Scrubber added by LADCO 17 127 127855AAC 0003 0005 01 10100222 SO2 11.72 13.31 1.331 0.0 0.900 SCRUBBER Scr
fcid70.0079.4630.719cyid70.0079.4630.719
STID=17 CYID=135 fcid=135803AAA name=AMEREN ENERGY GENERATING CO
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 135 135803AAA 0001 001 01 10100203 SO2 32.99 37.45 3.745 0.0 0.900 SCRUBBER Scrubber added by LADCO 17 135 135803AAA 0001 0003 01 10100203 SO2 72.92 82.77 8.277 0.0 0.900 SCRUBBER Scrubber added by LADCO
fcid 105.91 120.22 12.022 cyid 105.91 120.22 12.022
STID=17 CYID=143 fcid=143805AAG name=AES ED EDWARDS STATION
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 143 143805AAG 0002 0004 01 10100202 SO2 15.28 17.34 1.734 0.0 0.900 SCRUBBER Scrubber added by LADCO
STID=17 CYID=157 fcid=157851AAA name=DYNEGY MIDWEST GENERATION INC Base Yr Grown Controlled Base Year Future Year
STID CYID feid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17157157851AAA000100010110100203SO225.1428.544.2810.00.850SCRUBBERScrubber added by LADCO17157157851AAA000200020110100203SO225.7929.284.3920.00.850SCRUBBERScrubber added by LADCO17157157851AAA001300130110100202SO227.7931.544.7320.00.850SCRUBBERScrubber added by LADCO
fcid 78.72 89.36 13.404 cyid 78.72 89.36 13.404
STID=17 CYID=167 fcid=167120AAO name=CITY WATER LIGHT & POWER Base Yr Grown Controlled Base Year Future Year
STID CYID feid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 167 167120AAO 0010 0012 01 10100203 SO2 44.20 50.18 0.050 0.0 0.999 SHUTDOWN Scrubber added by LADCO 17 167 167120AAO 0010 0013 01 10100203 SO2 16.40 18.62 0.019 0.0 0.999 SHUTDOWN Scrubber added by LADCO
fcid 60.61 68.80 0.069 cyid 60.61 68.80 0.069
STID=17 CYID=179 fcid=179801AAA name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year
STID CYID feid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 179 179801AAA 0018 0029 01 10100203 SO2 25.35 28.77 2.877 0.0 0.900 SCRUBBER Scrubber added by LADCO 17 179 179801AAA 0018 0031 01 10100203 SO2 41.57 47.19 4.719 0.0 0.900 SCRUBBER Scrubber added by LADCO

fcid66.9175.967.596cyid66.9175.967.596
STID=17 CYID=197 fcid=197809AAO name=MIDWEST GENERATION LLC Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 197 197809AAO 0006 0009 01 10100203 SO2 15.89 18.04 1.804 0.0 0.900 SCRUBBER Scrubber added by LADCO 17 197 197809AAO 0016 0031 01 10100202 SO2 27.43 31.13 3.113 0.0 0.900 SCRUBBER Scrubber added by LADCO 17 197 197809AAO 0017 0033 01 10100202 SO2 23.13 26.26 2.626 0.0 0.900 SCRUBBER Scrubber added by LADCO
fcid 66.45 75.44 7.544
STID=17 CYID=197 fcid=197810AAK name=MIDWEST GENERATION LLC
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
17 197 197810AAK 0009 0014 02 10100222 SO2 11.64 13.21 1.321 0.0 0.900 SCRUBBER Scrubber added by LADCO 17 197 197810AAK 0011 0016 02 10100222 SO2 25.67 29.14 2.914 0.0 0.900 SCRUBBER Scrubber added by LADCO
17 197 197810AAK 0013 0010 03 10100501 SO2 0.00 0.00 0.000 0.0 0.999 SHUTDOWN Scrubber added by LADCO
17 197 197810AAK 0007 0012 02 10100223 SO2 15.33 17.40 0.017 0.0 0.999 SHUTDOWN Scrubber added by LADCO 17 197 197810AAK 0007 0012 03 10100501 SO2 0.00 0.00 0.000 0.0 0.999 SHUTDOWN Scrubber added by LADCO
fcid 52.64 59.75 4.252
cyid 119.09 135.19 11.796 stid 696.90 777.66 97.225
STID=18 CYID=147 fcid=00020 name=INDIANA MICHIGAN POWER-ROCKPORT Base Yr Grown Controlled Base Year Future Year
STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
18 147 00020 1 001 01 10100222 SO2 66.42 72.32 7.232 0.0 0.900 SCRUBBER Scrubber added by LADCO 18 147 00020 1 001 02 10100501 SO2 0.00 0.000 0.00 SCRUBBER Scrubber added by LADCO
fcid 66.42 72.32 7.232
cyid 66.42 72.32 7.232
stid 66.42 72.32 7.232
stid 66.42 72.32 7.232 STID=19 CYID=115 fcid=58-07-001 name=MIDAMERICAN ENERGY CO LOUISA STATION
STID=19 CYID=115 fcid=58-07-001 name=MIDAMERICAN ENERGY CO LOUISA STATION Base Yr Grown Controlled Base Year Future Year
STID=19 CYID=115 fcid=58-07-001 name=MIDAMERICAN ENERGY CO LOUISA STATION
STID=19 CYID=115 fcid=58-07-001 name=MIDAMERICAN ENERGY CO LOUISA STATION Base Yr Grown Controlled Base Year Future Year
STID=19 CYID=115 fcid=58-07-001 name=MIDAMERICAN ENERGY CO LOUISA STATION Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 19 115 58-07-001 117487 147281 99 10100222 SO2 33.66 38.22 3.822 0.0 0.900 SCRUBBER Scrubber added by LADCO STID=21 CYID=127 fcid=2112700003 name=KENTUCKY POWER CO
STID=19 CYID=115 fcid=58-07-001 name=MIDAMERICAN ENERGY CO LOUISA STATION Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 19 115 58-07-001 117487 147281 99 10100222 SO2 33.66 38.22 3.822 0.0 0.900 SCRUBBER Scrubber added by LADCO
STID=19 CYID=115 fcid=58-07-001 name=MIDAMERICAN ENERGY CO LOUISA STATION Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 19 115 58-07-001 117487 147281 99 10100222 SO2 33.66 38.22 3.822 0.0 0.900 SCRUBBER Scrubber added by LADCO STID=21 CYID=127 fcid=2112700003 name=KENTUCKY POWER CO Base Yr Grown Controlled Base Year Future Year
STID=19 CYID=115 fcid=58-07-001 name=MIDAMERICAN ENERGY CO LOUISA STATION Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 19 115 58-07-001 117487 147281 99 10100222 SO2 33.66 38.22 3.822 0.0 0.900 SCRUBBER Scrubber added by LADCO STID=21 CYID=127 fcid=2112700003 name=KENTUCKY POWER CO Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 21 127 2112700003 2 002 99 10100202 SO2 104.52 113.82 11.382 0.0 0.900 SCRUBBER Scrubber added by LADCO
STID=19 CYID=115 fcid=58-07-001 name=HIDAMERICAN ENERGY CO LOUISA STATION Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrldes 19 115 58-07-001 117487 147281 99 10100222 SO2 33.66 38.22 3.822 0.0 0.900 SCRUBBER Scruber added by LADCO STID=21 CYID=127 fcid=2112700003 name=KENTUCKY POWER CO Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrldes STID=21 CYID=127 fcid=2112700003 name=KENTUCKY POWER CO Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrldes 21 127 2112700003 2 002 99 10100202 SO
STID=19 CYID=115 fcid=58-07-001 name=MIDAMERICAN ENERGY CO LOUISA STATION Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 19 115 58-07-001 117487 147281 99 10100222 SO2 33.66 38.22 3.822 0.0 0.900 SCRUBBER Scrubber added by LADCO STID=21 CYID=127 ctid=2112700003 name=KENTUCKY POWER CO Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrldes STID=21 CYID=127 ctid=2112700003 arme=KENTUCKY POWER CO Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Control EF Control EF ctrldes 21 127 2112700003 2 002 99 </td

21 161 2116100009 1 001 99 10100202 SO2 42.17 45.92 4.592 0.0 0.900 SCRUBBER Scrubber added by LADCO 21 161 2116100009 2 002 99 10100212 SO2 55.39 60.31 6.031 0.0 0.900 SCRUBBER Scrubber added by LADCO 97.55 106.23 10.623 fcid 97.55 106.23 10.623 cyid stid 202.07 220.04 22.004 STID=27 CYID=61 fcid=2706100004 name=Minnesota Power Inc - Boswell Energy Ctr Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 27 61 2706100004 SV003 EU003 001 10100226 SO2 33.99 39.15 16.778 0.3 0.700 SCRUBBER Scrubber added by LADCO 61 2706100004 SV003 EU003 10100501 SO2 0.00 0.00 0.000 0.700 SCRUBBER Scrubber added by LADCO 27 002 0.3 33.99 fcid 39.15 16.778 33.99 39.15 16.778 cyid STID=27 CYID=109 fcid=2710900011 name=Rochester Public Utilities - Silver Lake Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 27 109 2710900011 SV003 EU004 001 10100202 SO2 SCRUBBER Scrubber added by LADCO 7.86 9.05 1.357 0.0 0.850 STID=27 CYID=141 fcid=2714100004 name=NSP - Sherburne Generating Plant Base Yr Grown Controlled Base Year Future Year STID CYID fcid Control EF Control EF ctrltype stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day ctrldes 27 141 2714100004 SV001 EU001 001 10100222 SO2 4.138 0.3 SCRUBBER Scrubber added by LADCO 16.7619.31 0.850141 2714100004 SV001 EU002 001 10100222 SO2 22.5525.97 5.5650.3 0.850 SCRUBBER Scrubber added by LADCO 27 ----45.28 39.31 9.703 fcid 9.703 39.31 45.28cyid stid 81.16 93.48 27.838 STID=39 CYID=13 fcid=0607130015 name=R. E. BURGER PLANT Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes SCRUBBER Scrubber added by LADCO 39 13 0607130015 R6 B011 B011P1 10100202 SO2 29.83 32.483.248 0.0 0.900 3.786 0.900 39 13 0607130015 R7 B012 B012P1 10100202 SO2 34.7737.86 0.0 SCRUBBER Scrubber added by LADCO ---fcid 64.60 70.34 7.034 cyid 64.60 70.34 7.034 STID=39 CYID=31 fcid=0616000000 name=CONESVILLE POWER PLANT Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes 39 31 0616000000 R4 B004 B004P1 10100212 SO2 316.00 344.11 34.411 0.900 SCRUBBER Scrubber added by LADCO 0.0 STID=39 CYID=167 fcid=0684000000 name=MUSKINGUM RIVER POWER PLANT Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes

39 167 068400000 R2 B002 B002P1 10100201 SO2 65.07 70.85 7.085 0.0 0.900 SCRUBBER Scrubber added by LAD 39 167 068400000 R3 B003 B003P1 10100201 SO2 94.58 103.00 10.300 0.0 0.900 SCRUBBER Scrubber added by LAD 39 167 068400000 R3 B003 B003P2 10100501 SO2 94.58 103.00 10.300 0.0 0.900 SCRUBBER Scrubber added by LAD 39 167 068400000 R3 B003 B003P2 10100501 SO2 0.00 0.00 0.00 0.900 SCRUBBER Scrubber added by LAD 39 167 068400000 R4 B004 B004P2 10100501 SO2 0.00 0.00 0.00 0.900 SCRUBBER Scrubber added by LAD 39 167 0684000000 R5 B005 B005P2 10100501 SO2 0.00 0.00 0.00 0.900 SCRUBBER Scrubber added by LAD <tr< th=""><th>DCO ADCO DCO DCO DCO ADCO DCO ADCO ADCO</th></tr<>	DCO ADCO DCO DCO DCO ADCO DCO ADCO ADCO
STID=47 CYID=1 fcid=0009 name=TVA BULL RUN FOSSIL PLANT Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes	
47 1 0009 S-1 001 99 10100212 SO2 130.81 136.82 13.682 0.0 0.900 SCRUBBER Scrubber added by LADCO	
STID=47 CYID=73 fcid=0007 name=TVA JOHN SEVIER FOSSIL PLANT	
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes	
47 73 0007 S-1A 001 99 10100212 SO2 20.15 21.07 2.107 0.0 0.900 SCRUBBER Scrubber added by LADCO 47 73 0007 S-1B 002 99 10100212 SO2 20.25 21.18 2.118 0.0 0.900 SCRUBBER Scrubber added by LADCO	
47 73 0007 S-2A 003 99 10100212 SO2 19.62 20.52 2.052 0.0 0.900 SCRUBBER Scrubber added by LADCO	
47 73 0007 S-2B 004 99 10100212 SO2 18.93 19.80 1.980 0.0 0.900 SCRUBBER Scrubber added by LADCO	
fcid 78.95 82.57 8.257 cyid 78.95 82.57 8.257	
STID=47 CYID=85 fcid=0011 name=TVA JOHNSONVILLE FOSSIL PLANT	
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes	
47 85 0011 S1-01 001 99 10100212 SO2 17.06 17.84 1.784 0.0 0.900 SCRUBBER Scrubber added by LADCO	
47 85 0011 S1-04 004 99 10100212 SO2 19.85 20.76 2.076 0.0 0.900 SCRUBBER Scrubber added by LADCO	
47 85 0011 S1-05 005 99 10100212 SO2 24.11 25.22 2.522 0.0 0.900 SCRUBBER Scrubber added by LADCO	
fcid 61.02 63.82 6.382	
cyid 61.02 63.82 6.382	

STID=47 CYID=145	fcid=0013 nan	e=TVA KINGST	ON FOSSIL F	PLANT				
		Base Y	'r Grown	Controlled B	Base Year Futur	e Year		
STID CYID fcid	stkid dv	id prid scc	polid To	ns/Day Tons/D	Day Tons/Day	Control E	F Control EF	ctrltype ctrldes
		•	•	0	0 0			
47 145 0013	S-1 001	99 10100202	SO2 12	.68 13.26	1.326 0.0	0.900	SCRUBBER	Scrubber added by LADCO
47 145 0013	S-1 002	99 10100202	SO2 14	.00 14.65	1.465 0.0	0.900		Scrubber added by LADCO
								5

471450013S-10049910100202SO212.2412.801.2800.00.900SCRUBBER471450013S-10059910100202SO219.5720.472.0470.00.900SCRUBBER471450013S-20069910100202SO218.9219.791.9790.00.900SCRUBBER471450013S-20079910100202SO221.3022.282.2280.00.900SCRUBBER471450013S-20089910100202SO218.5419.391.9390.00.900SCRUBBER	Scrubber added by LADCO
STID=47 CYID=165 fcid=0025 name=TVA GALLATIN FOSSIL PLANT	
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF	F ctrltype ctrldes
47 165 0025 S-01 002 99 10100212 SO2 14.87 15.56 1.556 0.0 0.900 SCRUBBER 47 165 0025 S-02 003 99 10100212 SO2 16.33 17.08 1.708 0.0 0.900 SCRUBBER	 Scrubber added by LADCO
fcid 65.49 68.50 6.850 cyid 65.49 68.50 6.850 stid 488.04 510.46 51.046	
STID=54 CYID=39 fcid=0006 name=APPALACHIAN POWER - KANAWHA RIVER PLANT Base Yr Grown Controlled Base Year Future Year	
STID CYID feid stkid dvid prid see polid Tons/Day Tons/Day Tons/Day Control EF Control EF	
	Scrubber added by LADCO Scrubber added by LADCO
fcid 40.39 43.98 21.990 cyid 40.39 43.98 21.990	
STID=54 CYID=51 fcid=0005 name=OHIO POWER - MITCHELL PLANT Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF	F ctrltype ctrldes
	Scrubber added by LADCO Scrubber added by LADCO
fcid 23.46 25.55 2.555	
STID=54 CYID=51 fcid=0006 name=OHIO POWER - KAMMER PLANT	
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EI	F ctrltype ctrldes

001 99 10100203 SO2 5.125 0.0 0.900 SCRUBBER Scrubber added by LADCO 54 51 0006 013 47.06 51.25 SCRUBBER Scrubber added by LADCO 013 99 002 SO2 5.190 0.0 54 51 0006 10100203 47.66 51.90 0.900 41.94 4.567 SCRUBBER Scrubber added by LADCO 54 51 0006 013 003 99 10100203 SO2 45.67 0.0 0.900

fcid 136.67 148.82 14.882 cyid 160.13 174.37 17.437
STID=54 CYID=53 fcid=0001 name=APPALACHIAN POWER COPHILIP SPORN PLANT
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
54 53 0001 014 001 99 10100202 SO2 18.65 20.31 2.031 0.0 0.900 SCRUBBER Scrubber added by LADCO 54 53 0001 014 002 99 10100202 SO2 15.87 17.28 1.728 0.0 0.900 SCRUBBER Scrubber added by LADCO 54 53 0001 014 003 99 10100202 SO2 21.46 23.36 2.336 0.0 0.900 SCRUBBER Scrubber added by LADCO 54 53 0001 014 003 99 10100202 SO2 21.46 23.36 2.336 0.0 0.900 SCRUBBER Scrubber added by LADCO 54 53 0001 014 004 99 10100202 SO2 20.53 22.36 2.236 0.0 0.900 SCRUBBER Scrubber added by LADCO 54 53 0001 005 005 99 10100202 SO2 46.82 50.98 0.0 0.900 SCRUBBER Scrubber added by LADCO
fcid 123.33 134.30 13.430
STID=54 CYID=53 fcid=0009 name=APPALACHIAN POWER - MOUNTAINEER PLANT Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
54 53 0009 001 001 99 10100202 SO2 11.20 12.19 1.219 0.0 0.900 SCRUBBER Scrubber added by LADCO
cyid 134.53 146.49 14.649
STID=54 CYID=79 fcid=0006 name=APPALACHIAN POWER - JOHN E AMOS PLANT
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
547900060120019910100202SO279.6386.728.6720.00.900SCRUBBERScrubber added by LADCO547900060120029910100202SO2100.33109.2610.9260.00.900SCRUBBERScrubber added by LADCO547900060030039910100202SO2139.38151.7715.1770.00.900SCRUBBERScrubber added by LADCO
fcid 319.35 347.75 34.775 cyid 319.35 347.75 34.775 stid 654.39 712.59 88.851
STID=55 CYID=79 fcid=241007690 name=WIS ELECTRIC POWER OAK CREEK STATION
Base Yr Grown Controlled Base Year Future Year STID CYID fcid stkid dvid prid scc polid Tons/Day Tons/Day Tons/Day Control EF Control EF ctrltype ctrldes
55 79 241007690 S13 B25 01 10100202 SO2 12.75 14.48 3.475 0.0 0.760 SCRUBBER Scrubber added by LADCO
55 79 241007690 S13 B26 01 10100202 SO2 8.68 9.85 2.462 0.0 0.750 SCRUBBER Scrubber added by LADCO 55 79 241007690 S14 B27 01 10100212 SO2 10.97 12.45 2.864 0.0 0.770 SCRUBBER Scrubber added by LADCO
55 79 241007690 S14 B28 01 10100212 SO2 11.28 12.81 2.945 0.0 0.770 SCRUBBER Scrubber added by LADCO
fcid 43.68 49.59 11.746 cyid 43.68 49.59 11.746 stid 43.68 49.59 11.746
3099.41 3381.52 400.481

Appendix II

Scenario C Controls (CAMD List)

NOx Controls (SCRs, 2007 – 2013))

Direct Name				Capacity	On Line	SCR Online
Plant Name	UniqueID_Final	State Name	County	MW	Year	Year
Chesterfield	3797_B_4	Virginia	Chesterfield	166	1960	2013
Chesterfield	3797_B_5	Virginia	Chesterfield	310	1964	2012
Scherer	6257_B_3	Georgia	Monroe	875	1987	2011
Chesterfield	3797_B_6	Virginia	Chesterfield	658	1969	2011
Sandow No 4	6648_B_4	Texas	Milam	545	1981	2011
Beech Hollow Power Project	82704_B_1	Pennsylvania	Washington	272	2011	2011
Longview Power	82702_B_1	West Virginia	Monongalia	695	2011	2011
Cliffside	2721_B_6	North Carolina	Cleveland	800	2011	2011
AES Westover	2526_B_11	New York	Broome	22	1943	2010
AES Westover	2526_B_12	New York	Broome	22	1943	2010
AES Westover	2526_B_13	New York	Broome	84	1951	2010
latan 2	6065_B_2	Missouri	Platte	850	2010	2010
Southwest	6195_B_2	Missouri	Greene	300	2010	2010
Trimble Station (LGE)	6071_B_2	Kentucky	Trimble	732	2010	2010
Elm Road Generating Station	56068_B_2	Wisconsin	Milwaukee	615	2010	2010
Clay Boswell	1893_B_3	Minnesota	Itasca	350	1973	2009
Asheville	2706_B_2	North Carolina	Buncombe	184	1971	2009
Conesville	2840_B_4	Ohio	Coshocton	780	1973	2009
Marshall	2727_B_3	North Carolina	Catawba	657	1969	2009
St Johns River Power Park	207_B_1	Florida	Duval	626	1987	2009
Ghent	1356_B_2	Kentucky	Carroll	469	1977	2009
Chalk Point LLC	1571_B_1	Maryland	Prince George's	341	1964	2009
Chalk Point LLC	1571_B_2	Maryland	Prince George's	342	1965	2009
San Juan	2451_B_2	New Mexico	San Juan	320	1973	2009
Big Bend		Florida	Hillsborough	411	1970	2009
Big Bend	645 B BB02	Florida	Hillsborough	391	1973	2009
Big Bend	645 B BB03	Florida	Hillsborough	414	1976	2009
Nebraska City Unit 2	6096_B_2	Nebraska	Otoe	663	2009	2009
Cross	130_B_4	South Carolina	Berkeley	652	2009	2009
Springerville	8223_B_4	Arizona	Apache	400	2009	2009
Sandow 5	82010_B_5	Texas	Milam	600	2009	2009
Oak Grove	82011_B_1	Texas	Robertson	800	2009	2009
Oak Grove	82011_B_2	Texas	Robertson	800	2009	2009
TS Power Plant	82013_B_1	Nevada	Eureka	200	2009	2009
Plum Point Energy	82014_B_1	Arkansas	Mississippi	665	2009	2009
Comanche	470_B_3	Colorado	Pueblo	750	2009	2009
Elm Road Generating Station	56068_B_1	Wisconsin	Milwaukee	615	2009	2009
Two Elk Generating Station	55360_B_1	Wyoming	Campbell	300	2009	2009
J K Spruce	7097_B_BLR2	Texas	Bexar	750	2009	2009
Dallman	963_B_34	Illinois	Sangamon	200	2009	2009
AES Greenidge LLC	2527_B_4	New York	Yates	200	1950	2009
AES Greenidge LLC		New York	Yates	27		2008
	2527_B_5				1950	
AES Greenidge LLC	2527_B_6	New York	Yates	106	1953	2008
Charles R Lowman	56_B_2	Alabama	Washington	238	1979	2008
Charles R Lowman	<u>56_B_3</u>	Alabama	Washington	238	1980	2008
Barry	3_B_5	Alabama	Mobile	750	1971	2008
St Johns River Power Park	207_B_2	Florida	Duval	626	1988	2008
Morgantown Generating Plant	1573_B_2	Maryland	Charles	620	1971	2008

Bailly	995_B_7	Indiana	Porter	160	1962	2008
San Juan	2451_B_1	New Mexico	San Juan	322	1976	2008
San Juan	2451_B_3	New Mexico	San Juan	495	1979	2008
Weston	4078_B_4	Wisconsin	Marathon	519	2008	2008
AES Deepwater	10670_B_AAB001	Texas	Harris	140	1986	2007
La Cygne	1241_B_1	Kansas	Linn	724	1973	2007
Morgantown Generating Plant	1573_B_1	Maryland	Charles	624	1970	2007
PSEG Hudson Generating Station	2403_B_2	New Jersey	Hudson	583	1967	2007
San Juan	2451_B_4	New Mexico	San Juan	506	1982	2007
Big Bend	645_B_BB04	Florida	Hillsborough	457	1985	2007
Cross	130_B_3	South Carolina	Berkeley	620	2007	2007
Wygen II	55479_B_4	Wyoming	Campbell	90	2007	2007
Council Bluffs	1082_B_4	lowa	Pottawattamie	790	2007	2007

SO2 Controls (FGDs, 2007 – 2012)

Plant Name	UniqueID_Final	State Name	County	Capacity MW	On Line Year	Scrubber Online Year
James H Miller Jr	6002_B_1	Alabama	Jefferson	684	1978	2011
James H Miller Jr	6002_B_2	Alabama	Jefferson	687	1976	2011
James H Miller Jr	6002_B_3	Alabama	Jefferson	687	1989	2011
James H Miller Jr	6002_B_4	Alabama	Jefferson	688	1991	2011
Cape Fear	2708 B 5	North Carolina	Chatham	143	1956	2011
Baldwin Energy Complex	889_B_1	Illinois	Randolph	624	1970	2011
Baldwin Energy Complex	889_B_2	Illinois	Randolph	629	1973	2011
Baldwin Energy Complex	889_B_3	Illinois	Randolph	629	1975	2011
Scherer	6257_B_3	Georgia	Monroe	875	1987	2011
Milton R Young	2823_B_B1	North Dakota	Oliver	250	1970	2011
W H Sammis	2866_B_6	Ohio	Jefferson	630	1969	2011
W H Sammis	2866_B_7	Ohio	Jefferson	630	1971	2011
PSEG Hudson Generating Station	2403 B 2	New Jersey	Hudson	583	1967	2011
John Sevier	3405_B_1	Tennessee	Hawkins	176	1955	2011
John Sevier	3405_B_2	Tennessee	Hawkins	176	1955	2011
John Sevier	3405_B_3	Tennessee	Hawkins	176	1956	2011
John Sevier	3405_B_4	Tennessee	Hawkins	176	1957	2011
Beech Hollow Power Project	82704_B_1	Pennsylvania	Washington	272	2011	2011
Longview Power	82702_B_1	West Virginia	Monongalia	695	2011	2011
Cliffside	2721_B_6	North Carolina	Cleveland	800	2011	2011
AES Greenidge LLC	2527_B_4	New York	Yates	27	1950	2010
AES Greenidge LLC	2527_B_5	New York	Yates	27	1950	2010
Barry	3_B_5	Alabama	Mobile	750	1971	2010
E C Gaston	26_B_5	Alabama	Shelby	861	1974	2010
Warrick	6705_B_4	Indiana	Warrick	300	1970	2010
Coffeen	861_B_01	Illinois	Montgomery	340	1965	2010
Coffeen	861_B_02	Illinois	Montgomery	560	1972	2010
Cardinal	2828_B_3	Ohio	Jefferson	630	1977	2010
Brandon Shores	602_B_1	Maryland	Anne Arundel	643	1984	2010
Brandon Shores	602_B_2	Maryland	Anne Arundel	643	1991	2010
Monroe	1733_B_4	Michigan	Monroe	775	1974	2010
Cliffside	2721_B_5	North Carolina	Cleveland	550	1972	2010
Crystal River	628_B_4	Florida	Citrus	720	1982	2010
Bowen	703_B_1BLR	Georgia	Bartow	713	1971	2010

Crist	641_B_6	Florida	Escambia	302	1970	2010
Crist	641_B_7	Florida	Escambia	477	1970	2010
Clifty Creek	983_B_1	Indiana	Jefferson	217	1975	2010
Clifty Creek	983_B_2	Indiana	Jefferson	217	1955	2010
Clifty Creek	983_B_3	Indiana	Jefferson	217	1955	2010
Clifty Creek	983_B_4	Indiana	Jefferson	217	1955	2010
-	983_B_5	Indiana	Jefferson	217	1955	2010
Clifty Creek Clifty Creek	983_B_6	Indiana	Jefferson	217	1955	2010
Chalk Point LLC	1571_B_1	Maryland	Prince George's	341	1956	2010
Chalk Point LLC		· · ·				
	1571_B_2 1572_B_1	Maryland	Prince George's	<u>342</u> 182	1965	2010
Dickerson		Maryland	Montgomery		1959	2010
Dickerson	1572_B_2	Maryland	Montgomery	182	1960	2010
Dickerson	<u>1572_B_3</u>	Maryland	Montgomery	182	1962	2010
R E Burger	2864_B_7	Ohio	Belmont	156	1955	2010
R E Burger	2864_B_8	Ohio	Belmont	156	1955	2010
Kyger Creek	2876_B_1	Ohio	Gallia	217	1955	2010
Kyger Creek	2876_B_2	Ohio	Gallia	217	1955	2010
Kyger Creek	2876_B_3	Ohio	Gallia	217	1955	2010
Kyger Creek	2876_B_4	Ohio	Gallia	217	1955	2010
Kyger Creek	2876_B_5	Ohio	Gallia	217	1955	2010
Cheswick	8226_B_1	Pennsylvania	Allegheny	580	1970	2010
PSEG Mercer Generating Station	2408_B_1	New Jersey	Mercer	315	1960	2010
PSEG Mercer Generating Station	2408_B_2	New Jersey	Mercer	310	1961	2010
Silver Lake	2008_B_4	Minnesota	Olmsted	61	1969	2010
Kingston	3407_B_1	Tennessee	Roane	135	1954	2010
Kingston	3407_B_2	Tennessee	Roane	135	1954	2010
Kingston	3407_B_3	Tennessee	Roane	135	1954	2010
Kingston	3407_B_4	Tennessee	Roane	135	1954	2010
Kingston	3407_B_5	Tennessee	Roane	177	1955	2010
Kingston	3407_B_6	Tennessee	Roane	177	1955	2010
Kingston	3407_B_7	Tennessee	Roane	177	1955	2010
Kingston	3407_B_8	Tennessee	Roane	177	1955	2010
Kingston	3407_B_9	Tennessee	Roane	178	1955	2010
Sioux	2107_B_1	Missouri	St. Charles	497	1967	2010
Sioux	2107_B_2	Missouri	St. Charles	497	1968	2010
Chesterfield	3797_B_5	Virginia	Chesterfield	310	1964	2010
Yorktown	3809_B_1	Virginia	York	159	1957	2010
AES Westover	2526_B_11	New York	Broome	22	1943	2010
AES Westover	2526_B_12	New York	Broome	22	1943	2010
AES Westover	2526_B_13	New York	Broome	84	1951	2010
latan 2	6065_B_2	Missouri	Platte	850	2010	2010
Southwest	6195_B_2	Missouri	Greene	300	2010	2010
Trimble Station (LGE)	6071_B_2	Kentucky	Trimble	732	2010	2010
Elm Road Generating Station	56068_B_2	Wisconsin	Milwaukee	615	2010	2010
Cholla	113_B_3	Arizona	Navajo	271	1980	2009
Мауо	6250_B_1A	North Carolina	Person	362	1983	2009
Mayo	6250_B_1B	North Carolina	Person	362	1983	2009
Conesville	2840_B_4	Ohio	Coshocton	780	1973	2009
G G Allen	2718_B_1	North Carolina	Gaston	162	1957	2009
G G Allen	2718_B_2	North Carolina	Gaston	162	1957	2009
G G Allen	2718_B_3	North Carolina	Gaston	260	1959	2009

G G Allen	2718 B 4	North Carolina	Gaston	275	1960	2009
G G Allen	2718_B_5	North Carolina	Gaston	265	1961	2009
H L Spurlock	6041_B_1	Kentucky	Mason	315	1977	2009
Crystal River	628_B_5	Florida	Citrus	717	1984	2009
Deerhaven Generating Station	663_B_B2	Florida	Alachua	228	1981	2009
Bowen	703_B_2BLR	Georgia	Bartow	718	1972	2009
Wansley	6052_B_2	Georgia	Heard	892	1978	2009
E W Brown	1355_B_1	Kentucky	Mercer	94	1957	2009
E W Brown	1355_B_2	Kentucky	Mercer	160	1963	2009
E W Brown	1355_B_3	Kentucky	Mercer	422	1971	2009
Ghent	1356_B_2	Kentucky	Carroll	469	1977	2009
Fayette Power Project	6179_B_1	Texas	Fayette	598	1979	2009
Fayette Power Project	6179_B_2	Texas	Fayette	598	1980	2009
Morgantown Generating Plant	1573_B_1	Maryland	Charles	624	1970	2009
Morgantown Generating Plant	1573_B_2	Maryland	Charles	620	1971	2009
PPL Brunner Island	3140_B_1	Pennsylvania	York	321	1961	2009
PPL Brunner Island	3140_B_2	Pennsylvania	York	378	1965	2009
Keystone	3136_B_1	Pennsylvania	Armstrong	850	1967	2009
Keystone	3136_B_2	Pennsylvania	Armstrong	850	1968	2009
Bull Run	3396_B_1	Tennessee	Anderson	881	1967	2009
Bay Shore		Ohio	Lucas	215	1968	2009
Hatfields Ferry Power Station	3179_B_1	Pennsylvania	Greene	530	1969	2009
Hatfields Ferry Power Station	3179_B_2	Pennsylvania	Greene	530	1970	2009
Hatfields Ferry Power Station	3179_B_3	Pennsylvania	Greene	530	1971	2009
Nebraska City Unit 2	6096_B_2	Nebraska	Otoe	663	2009	2009
Cross	130_B_4	South Carolina	Berkeley	652	2009	2009
Springerville	8223_B_4	Arizona	Apache	400	2009	2009
Sandow 5	82010_B_5	Texas	Milam	600	2009	2009
Oak Grove	82011_B_1	Texas	Robertson	800	2009	2009
Oak Grove	82011_B_2	Texas	Robertson	800	2009	2009
TS Power Plant	82013_B_1	Nevada	Eureka	200	2009	2009
Plum Point Energy	82014_B_1	Arkansas	Mississippi	665	2009	2009
Comanche	470_B_3	Colorado	Pueblo	750	2009	2009
Elm Road Generating Station	56068_B_1	Wisconsin	Milwaukee	615	2009	2009
Two Elk Generating Station	55360_B_1	Wyoming	Campbell	300	2009	2009
J K Spruce	7097_B_BLR2	Texas	Bexar	750	2009	2009
Dallman	963_B_34	Illinois	Sangamon	200	2009	2009
Charles R Lowman	56_B_1	Alabama	Washington	86	1969	2008
John E Amos	3935_B_1	West Virginia	Putnam	800	1971	2008
John E Amos	3935_B_2	West Virginia	Putnam	800	1972	2008
Cholla	113_B_4	Arizona	Navajo	380	1981	2008
Roxboro	2712_B_1	North Carolina	Person	369	1966	2008
Roxboro	2712_B_3A	North Carolina	Person	341	1973	2008
Roxboro	2712_B_3B	North Carolina	Person	341	1973	2008
Miami Fort	2832_B_7	Ohio	Hamilton	500	1975	2008
Miami Fort		Ohio	Hamilton	500	1978	2008
Cogentrix Virginia Leasing Corp	10071_B_2A	Virginia	Portsmouth	19	1978	2008
Cogentrix Virginia Leasing Corp	10071_B_2B	Virginia	Portsmouth	19	1988	2008
Cogentrix Virginia Leasing Corp	10071_B_2B	Virginia	Portsmouth	19	1988	2008
J M Stuart	<u></u>	Ohio	Adams	585	1988	2008
o m otdart	DI	0110	nuumo	505	1311	2000

597 597 795 1,115 1,115 902 929 112 112 112 112 112 112 112 112 112 112 113 114 115 112 112 113 114 115 112 113 114 115 112 112 112 112 113 114 115 115 116 117 118 (city) 18 (city) 18 478	1972 1974 1973 1974 1975 1974 1975 1974 1975 1954 1955 1970 1976 1973 1987 1987	2008 2008
795 1,115 1,115 902 929 112 112 112 112 112 112 113 114 112 112 112 112 510 891 435 (city) 18 (city) 18 (city) 18	1973 1974 1975 1974 1975 1974 1975 1954 1955 1970 1976 1987 1987	2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008
1,115 1,115 902 929 112 112 112 112 112 112 113 114 115 112 112 112 112 510 891 435 (city) 18 (city) 18 (city) 18	1974 1975 1974 1975 1954 1954 1955 1970 1976 1987 1987	2008 2008 2008 2008 2008 2008 2008 2008
1,115 902 929 112 112 510 891 435 (city) 18 (city) 18 (city) 18	1975 1974 1975 1954 1954 1955 1970 1976 1973 1987	2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008 2008
902 929 112 112 112 510 891 435 (city) 18 (city) 18 (city) 18	1974 1975 1954 1955 1970 1976 1973 1987	2008 2008 2008 2008 2008 2008 2008 2008
929 112 112 112 510 891 435 (city) 18 (city) 18	1975 1954 1954 1955 1970 1976 1973 1987 1987	2008 2008 2008 2008 2008 2008 2008 2008
112 112 112 510 891 435 (city) 18 (city) 18 (city)	1954 1954 1955 1970 1976 1973 1987 1987	2008 2008 2008 2008 2008 2008 2008 2008
112 112 510 891 435 (city) 18 (city) 18 (city) 18	1954 1955 1970 1976 1973 1987 1987	2008 2008 2008 2008 2008 2008 2008
112 510 891 435 (city) 18 (city) 18 (city) 18	1955 1970 1976 1973 1987	2008 2008 2008 2008 2008 2008
510 891 435 (city) 18 (city) 18 (city) 18 (city) 18	1970 1976 1973 1987 1987	2008 2008 2008 2008
891 435 (city) 18 (city) 18 (city) 18 (city) 18	1976 1973 1987 1987	2008 2008 2008
435 (city) 18 (city) 18 (city) 18 (city) 18	1973 1987 1987	2008 2008
(city) 18 (city) 18 (city) 18	1987 1987	2008
(city) 18 (city) 18	1987	
(city) 18		2008
	1987	
478		2008
	1984	2008
amie 690	1978	2008
749	1969	2008
774	1972	2008
766	1973	2008
366	1973	2008
370	1975	2008
473	1972	2008
wn 295	1975	2008
wn 295	1977	2008
wn 295	1980	2008
eld 658	1969	2008
243	1963	2008
244	1964	2008
519	2008	2008
690	1972	2007
165	1956	2007
175	1958	2007
1,300	1973	2007
1,300	1980	2007
600	1967	2007
600	1967	2007
639	1968	2007
343	1980	2007
		2007
343		2007
343 th 19		2007
th 19		2007
th 19 th 19		2007
19 th 19 th 19 th 19		2007
th 19 th 19 th 19 th 19 615		2007
th 19 th 19 th 19 615 378	1909	2007
th 19 th 19 th 19 615 378 657	1097	2007
th 19 th 19 th 19 th 19 615 378 657 (city) 18	1987	2007
th 19 th 19 th 19 615 378 657	1987 1987 1987	2007 2007
	uth 19 uth 19 uth 19 615 378	19 1988 uth 19 1988 uth 19 1988 uth 19 1988 615 1982 378 1966 657 1969 I (city) 18 1987

Louisa	6664_B_101	Iowa	Louisa	700	1983	2007
Allen S King	1915_B_1	Minnesota	Washington	571	1968	2007
Mitchell	3948_B_1	West Virginia	Marshall	800	1971	2007
Gibson	6113_B_1	Indiana	Gibson	630	1975	2007
Gibson	6113_B_2	Indiana	Gibson	628	1975	2007
Winyah	6249_B_4	South Carolina	Georgetown	270	1981	2007
Pleasant Prairie	6170_B_2	Wisconsin	Kenosha	617	1985	2007
Cross	130_B_3	South Carolina	Berkeley	620	2007	2007
Wygen II	55479_B_4	Wyoming	Campbell	90	2007	2007
Council Bluffs	1082_B_4	lowa	Pottawattamie	790	2007	2007

Assumed BART Facilities and Units

State	County	Fac ID	Facility Name	Unit ID
MI	Bay	B2840	CE - KARN/WEADOCK	EU00036
MI	Bay	B2840	CE - KARN/WEADOCK	EU00037
MI	Eaton	B4001	LAN. BW&L ERICKSON	EU00007
MI	Houghton	B6553	UP POWER CO / PORTAGE	EU00008
MI	Huron	B2815	DTE - HARBOR BEACH	EU00009
MI	Ingham	B2647	LAN. BW&L Eckert	RG00023
MI	Ingham	B2647	LAN. BW&L Eckert	RG00023
MI	Ingham	B2647	LAN. BW&L Eckert	RG00023
MI	Ingham	B2647	LAN. BW&L Moores Park	RG00021
MI	Marquette	B4261	WE-ENERGIES	EU00029
MI	Marquette	B4261	WE-ENERGIES	EU00030
MI	Marquette	B4261	WE-ENERGIES	EU00031
MI	Marquette	B4261	WE-ENERGIES	EU00032
MI	Marquette	B4261	WE-ENERGIES	EU00033
MI	Monroe	B2816	DTE - MONROE	EU00062
MI	Monroe	B2816	DTE - MONROE	EU00068
MI	Monroe	B2816	DTE - MONROE	EU00063
MI	Monroe	B2816	DTE - MONROE	EU00064
MI	Ottawa	B2835	CE – CAMPBELL	EU00062
MI	Ottawa	B2835	CE – CAMPBELL	EU00061
MI	Saint Clair	B2796	DTE - ST. CLAIR / BELLE RIVER	EU00111
MI	Saint Clair	B6145	DTE – GREENWOOD	EU00009
MI	Wayne	B2132	WYANDOTTE	EU00036
MI	Wayne	B2185	DETROIT PLD, MISTERSKY	EU00014
MI	Wayne	B2811	DTE – TRENTON	EU00035
ОН	Lake	0243160009	CEI., EASTLAKE PLANT	B005
OH	Lake	0247030013	Orion Power Midwest	B012
OH		0285010188	Dept of Public Utilities, City of Orrville	B001
OH		0285010188	Dept of Public Utilities, City of Orrville	B004
OH		0448020006	Toledo Edison Co., Bay Shore	B003
OH		0448020006	Toledo Edison Co., Bay Shore	B004
OH		0616000000	Conesville Power Plant	B003
OH		0616000000	Conesville Power Plant	B004
OH		0616000000	Conesville Power Plant	B007
OH		0641050002	Cardinal Power Plant	B001
ОН		0641050002	Cardinal Power Plant	B002

ОН		0641050002	Cardinal Power Plant	B003
OH		0641050002	Cardinal Power Plant	B004
OH		0641050002	Cardinal Power Plant	B008
ОН		0641050002	Cardinal Power Plant	B009
ОН		0641050002	Cardinal Power Plant	B009
ОН	Jefferson	0641160017	W. H. SAMMIS PLANT	B011
OH	Jefferson	0641160017	W. H. SAMMIS PLANT	B012
OH	Jefferson	0641160017	W. H. SAMMIS PLANT	B013
OH		0684000000	Muskingum River Power Plant	B006
OH	Adams	0701000007	DP&L, J.M. Stuart Generating Station	B001
OH	Adams	0701000007	DP&L, J.M. Stuart Generating Station	B002
OH	Adams	0701000007	DP&L, J.M. Stuart Generating Station	B003
OH	Adams	0701000007	DP&L, J.M. Stuart Generating Station	B004
OH		0701000060	DP&L, Killen Station	B001
OH		1409040243	City of Hamilton Dept of Public Utilities	B002
ОН		1409040243	City of Hamilton Dept of Public Utilities	B008
OH		1409040243	City of Hamilton Dept of Public Utilities	B009
OH		1413100008	CG&E W. C. BECKJORD	B005
ОН		1413100008	CG&E W. C. BECKJORD	B006
ОН		1431350093	CG&E MIAMI FORT STATION	B015
IL	Peoria	856	Ameren – Edwards	2
IL	Sangamon	963	CWLP – Dallman	31
IL	Sangamon	963	CWLP – Dallman	32
IL	Christian	876	Dominion – Kincaid	1
IL	Christian	876	Dominion – Kincaid	2
WI	COLUMBIA	111003090	Alliant Energy-Columbia Generating	B20
WI	COLUMBIA	111003090	Alliant Energy-Columbia Generating	B21
WI	COLUMBIA	111003090	Alliant Energy-Columbia Generating	B22
WI	GRANT	122014530	Alliant Energy, Nelson Dewey	B22 (unit 2)
WI	MILWAUKEE	241007690	We Energies-Oak Creek Station	B26 (Unit 6)
WI	MILWAUKEE	241007690	We Energies-Oak Creek Station	B27 (Unit 7)
WI	MILWAUKEE	241007690	We Energies-Oak Creek Station	B28
WI	MILWAUKEE	241007800	We Energies-Valley Station	B21
WI	MILWAUKEE	241007800	We Energies-Valley Station	B23
WI	MILWAUKEE	241007800	We Energies-Valley Station	B24
WI	BROWN	405031990	WI Public Service Corp - JP Pulliam	B27 (unit 8)
WI	SHEBOYGAN	460033090	WP & L Alliant Energy – Edgewater	B24
WI	BUFFALO	606034110	Dairyland Power Coop Alma Station (J.P. Madgett boilers)	B25 (+B26)
WI	BUFFALO	606034110	Dairyland Power Coop Alma Station	B27
WI	VERNON	663020930	Dairyland Power Coop Genoa Station	B20
WI	VERNON	663020930	Dairyland Power Coop Genoa Station	B25
IN	Porter	995	Bailly	7
IN	Porter	995	Bailly	8
IN	Vermillion	1001	Cayuga	1
IN	Vermillion	1001	Cayuga	2
IN	Montgomery	1024	Crawfordsville	6
IN	Warrick	1012	Culley	2

IN	Warrick	1012	Culley	3
IN	Gibson	6113	Gibson	1
IN	Gibson	6113	Gibson	2
IN	Cass	1032	Logansport	6
IN	Sullivan	6213	Merom	1
IN	Sullivan	6213	Merom	2
IN	LaPorte	997	Michigan City	12
IN	Lake	996	Mitchell	11
IN	Pike	994	Petersburg	1
IN	Pike	994	Petersburg	2
IN	Pike	994	Petersburg	3
IN	Pike	1043	Ratts	1
IN	Pike	1043	Ratts	2
IN	Wayne	7335	RPL	2
IN	Jasper	6085	Schahfer	14
IN	Jasper	6085	Schahfer	15
IN	Lake	981	Stateline	4
IN	Marion	990	Stout	70
IN	Dearborn	988	Tanners Creek	4
IN	Vigo	1010	Wabash River	6
IN	Warrick	6705	Warrick	4
IA		07-02-005	Cedar Falls Utilities	Unit #7 (EU10.1A)
IA		88-01-004	Central Iowa Power Cooperative (CIPCO) – Summit Lake Station	CombTurbines (EU 1/1G, EU2/2G)
IA		70-08-003	Central Iowa Power Cooperative (CIPCO) – Fair Station	Unit # 2 (EU 2 & EU 2G)
IA		85-01-006	City of Ames - Steam Electric Plant	Boiler #7 (EU 2)
IA		29-01-013	Interstate Power & Light - Burlington	Main Plant Boiler.
IA		29-01-013		Boiler #4. Sixteen
IA		03-03-001	Interstate Power & Light - Lansing	units in total.
IA		23-01-014	Interstate Power & Light - ML Kapp	Boiler #2. Six units in total.
IA		57-01-042	Interstate Power & Light - Prairie Creek	Boiler #4. Fourteen units in total.
IA		78-01-026	MidAmerican Energy Co - Council Bluffs	Boiler #3 (EU003)
IA		97-04-010	MidAmerican Energy Co - Neal North	Boilers #1-3 (EU001 - EU003)
IA		97-04-011	MidAmerican Energy Co - Neal South	Boiler #4 (EU003)
IA		70-01-011	Muscatine Power and Water	Boiler #8
IA		63-02-005	Pella Municipal Power Plant	Boilers #6-8
MN		2709900001	Austin Utilities NE Power Station	EU001
MN		2713700027	Hibbing Public Utilities	EU003
MN		2703100001	MN Power, Taconite Harbor	EU003
MN		2706100004	MN Power, Boswell Energy Center	EU003
MN		2701500010	New Ulm Public Utilities	EU003 - Boiler 4
MN		2711100002	Otter Tail Power Hoot Lake	EU003
MN		2710900011	Rochester Public Utilities, Silver Lake	EU003
MN		2710900011	Rochester Public Utilities, Silver Lake	EU004
MN		2713700028	Virginia Public Utilities	EU003 - Boiler 9
MN		2714100004	Xcel Energy, Sherco	EU001, EU002
MN		2716300005	Xcel Energy, Allen S King	EU001 - Boiler 1

MN	2705300015	Xcel Energy, Riverside	EU003 - Boiler 8
MO	290710003	Ameren -Labadie	B1, B2, B3, B4
MO	291830001	Ameren - Sioux	B1, B2
MO	290990016	Ameren - Rush Island	B1, B2
MO	290950031	Auila - Sibley	B3 - 5C
МО	291430004	Assoc. Electric - New Madrid	B1(EP-01), B2 (EP-02)
МО	290770039	City Utilities Springfield - Southwest	B1 (E09)
MO	290770005	City Utilities Springfield - James River	EO7, EO8
MO	290970001	Empire Distric Electric - Asbury	B7
MO	290830001	KC Power and Light - Montrose	EP08
МО	290210004	Aqula - Lake Road	EP06
МО	291750001	Assoc. Electric - Thomas Hill	EP01, EP02
МО	290950021	Trigen - Kansas City	B1A
MO	290190002	City of Columbia Municipal Power Plant	EP02
MO	291950010	Marshall Munipal Utilities	EP05
МО	290950050	Independence Power & Light-Blue Valley	B3 (EP05)
			- (/
WV	3943	Fort Martin	
WV	6004	Pleasants	
WV	3948	Mitchell	
WV	3935	Amos	
WV	6264	Mountaineer	
WV	3944	Harrison	
TN	3396	TVA Bull Run	
TN	3399	TVA Cumberland	
KY	1363	Cane Run	
KY	1364	Mill Creek	
KY	6041	Spurlock	
KY	1384	John Sherman Cooper	
KY	1353	Big Sandy	
KY	1356	Ghent	
KY	1355	Brown	
KY	1374	Owensboro Municipal	
KY	1372	Henderson Municipal	
KY	1378	Paradise	
KY	1361	Coleman	
KY	1382	Reid/Henderson 2	
KY	6639	Green	

ILLINOIS ENVIRONMENTAL PROTECTION AGENCY

Notice of Public Hearing for State Implementation Plan (SIP) Submittals For the Chicago, Illinois Ozone Nonattainment Area

The Illinois Environmental Protection Agency (Illinois EPA) will hold a public hearing on December 16, 2008 at 9:00 a.m. in Room 9-031 at the James R. Thompson Center, 100 West Randolph Street, Chicago, Illinois.

The public hearing will be held by the Illinois EPA Bureau of Air for the purpose of gathering public comments on two draft SIPs related to the 1997 8-hour ozone National Ambient Air Quality Standard (NAAQS). The Illinois EPA is seeking comments on the draft Attainment Demonstration, the draft Maintenance Plan, and associated draft motor vehicle emissions budgets, all of which the Illinois EPA proposes to submit to the United States Environmental Protection Agency (U.S. EPA) as SIP revisions to meet the requirements of the federal Clean Air Act (CAA). The Attainment Demonstration contains the State's plan for attaining the 1997 8hour ozone NAAOS in the Chicago, Illinois nonattainment area. The Illinois EPA intends to request that U.S. EPA redesignate the Chicago area to attainment of the 1997 8-hour ozone NAAQS based on ambient monitoring data from 2006 through 2008. The draft Maintenance Plan contains the State's plan for maintaining the 8-hour ozone NAAQS for at least 10 years after U.S. EPA redesignates the area to attainment. The SIP revisions will also establish new motor vehicle emissions budgets for the years 2009 and 2020 for the nonattainment area. The hearing will satisfy the requirements of Section 110(1) of the CAA (42. U.S.C. 7401(1) (public notice for SIP submittals)). The Illinois EPA will also be taking comments on establishing boundaries for the nonattainment area to be established pursuant to the 2008 ozone NAAQS revision.

Copies of these draft SIP submittals for the Chicago, Illinois nonattainment area may be viewed by the public prior to the hearing during regular business hours (Monday through Friday 8:30 a.m. until 4:30 p.m., except for State holidays) at the Illinois EPA's offices at 9511 West Harrison Street in Des Plaines, Illinois, as well as on Illinois EPA's website at http://www.epa.state.il.us. No walk-in requests for copies of this material will be accommodated. Requests and public inquiries should be directed to Rachel Doctors at the address below.

The hearing will be held under the provisions of the Illinois EPA's "Procedures for Information and Quasi-Legislative Public Hearings" (35 Ill. Adm. Code 164). Any questions about the hearing procedures, requests for copies of the hearing rules, or requests for special need interpreters should be directed to the address below. Requests for special needs interpreters must be made by December 1, 2008.

<u>Closure of the Hearing Record.</u> The Hearing Record will close on January 15, 2009. Comments need not be notarized, but must be postmarked by midnight January 15, 2009, and mailed to Rachel Doctors, Illinois EPA, 1021 North Grand Avenue East, P.O. Box 19276, Springfield, Illinois 62794-9276, telephone number 217/782-5544 or TDD 217.782-9143.

DRAFT

Maintenance Plan for the Illinois Portion of the Chicago Ozone Nonattainment Area For the 1997 8-Hour Ozone Standard

AQPSTR 08-08

November 15, 2008

Illinois Environmental Protection Agency 1021 North Grand Avenue East Springfield, Illinois 62794-9276

TABLE OF CONTENTS

Page

LIST	OF TA	ABLES .		•	•	•		•	•	iii
LIST	OF FI	GURES .								iv
EXE	CUTIV	E SUMMARY								5
1.0	INTI	RODUCTION								6
	1.1	Regulatory Ba	ckground		•	•		•		6
	1.2	Status of Air (Quality .			•				8
2.0	RED	ESIGNATION	AND MAIN	TENA	NCE PL	AN RI	EQUI	REMEN	NTS	9
3.0	OZO	NE MONITOR	ING .							11
	3.1	Monitored Dea	sign Values							11
	3.2	Quality Assura	0							13
	3.3	Continued Mo				•				13
4.0	EMI	SSION INVENT	FORY .							14
	4.1	Attainment Ye	ar Inventory	y - 2006		•		•		14
	4.2	Air Quality Im	provements	and En	nission C	ontrols				15
	4.3	Emission Proje	ections .							16
	4.4	Demonstration	of Mainten	ance						17
	4.5	Provisions for	Future Upd	ates		•			•	18
5.0	CON	TROL MEASU	RES AND	REGUI	LATION	IS				19
	5.1	Attainment De	emonstration	Contro	l Measur	es				19
	5.2	Reasonable Fu	rther Progre	ess		•		•		20
	5.3	Reasonably A	vailable Con	trol Tec	hnology	(RAC	Г).			21
	5.4	Controls to Re	main in Effe	ect.		•	•			22
	5.5	Provisions for	Permitting I	New or I	Modified	l Emiss	ion So	urces		22
	5.6	Transportation			•		•			22
6.0	CON	TINGENCY M	EASURES							24
	6.1	Contingency N								24
	6.2	Commitment t		an.			•			26
	6.3	Public Particip	oation .							27
	6.4	Legal Authori		nent and	Enforce		•	•	•	27
7.0	CON	CLUSIONS							•	28
							• • • •			

TABLE OF CONTENTS (Continued)

- APPENDIX A Summary of Ambient Air Monitoring Data (2006-2008)
- **APPENDIX B** Transportation Conformity

LIST OF TABLES

		Page
Table 4.1	2006 Chicago Ozone Nonattainment Area VOM and NOx Emissions	14
Table 4.2	2002 Chicago Ozone Nonattainment AreaVOM and NOx Emissions.	15
Table 4.3	2013 Chicago Ozone Nonattainment Area VOM and NOx Emissions	16
Table 4.4	2020 Chicago Ozone Nonattainment Area VOM and NOx Emissions	17
Table 4.5	Comparison of 2006, 2013, and 2020 Emission Estimates Chicago Nonattainment Area	17
Table 4.6	Estimated NOx Emission Reductions from Utility Boilers Resulting from Implementation of Illinois' Multi-Pollutant Standards.	18
Table 5.1	Proposed Chicago NAA Year 2020 Motor Vehicle Emissions Budgets	23
Table 6.1	Contingency Plan for the Chicago 8-Hour Ozone Nonattainment Area	25

LIST OF FIGURES

Page

Figure 1.1	Map of the Lake Michigan Nonattainment Areas	7
Figure 3.1	Ozone Monitors in the Lake Michigan Area	11
Figure 3.2	Comparison of 8-Hour Ozone Design Values for the Lake Michigan Region Between 2001-2003 and 2006-2008.	12

EXECUTIVE SUMMARY

This document describes Illinois' Maintenance Plan for the Illinois portion of the Chicago ozone nonattainment area. A Maintenance Plan is required before the area can be redesignated from nonattainment to attainment of the 8-hour ozone National Ambient Air Quality Standard (NAAQS) promulgated in 1997. This document also provides technical information required to support a redesignation request. Illinois intends to submit such a request to the U. S. Environmental Protection Agency (U.S. EPA). The Illinois Environmental Protection Agency (Illinois EPA) has prepared this plan in consultation with the Indiana Department of Environmental Management (IDEM), the Wisconsin Department of Natural Resources (WDNR), and the Michigan Department of Environmental Quality (MDEQ), the Lake Michigan Air Directors Consortium (LADCO), and U.S. EPA. The IDEM is preparing a similar plan for the Indiana portion of the Chicago nonattainment area.

Ozone air quality has dramatically improved in the Lake Michigan region as a result of implementation of State and Federal control measures since the designation of the Chicago area as nonattainment in 2004. With the exception of Holland, Michigan, the entire Lake Michigan region, including the Chicago nonattainment area, has at least three years of complete, quality assured ambient air quality monitoring data for 2006-2008 that demonstrates compliance with the 1997 8-hour ozone NAAQS. These air quality improvements are due to permanent and enforceable emission control measures.

This Maintenance Plan provides for the continued attainment of the 8-hour ozone air quality standard for the Chicago nonattainment area for a period of ten years after U.S. EPA has formally redesignated the area to attainment. The Plan also provides assurances that, even if there is a subsequent violation of the air quality standard, measures listed in the Plan will prevent any future occurrences through contingency measures that would be triggered upon such an occurrence.

1.0 INTRODUCTION

This document describes Illinois' Maintenance Plan for the Illinois portion of the Chicago ozone nonattainment area. A maintenance plan is required before the area can be redesignated from nonattainment to attainment of the 8-hour ozone National Ambient Air Quality Standard (NAAQS) promulgated by the U. S. Environmental Protection Agency (U.S. EPA) in 1997. Illinois intends to submit such a request to the U.S. EPA in conjunction with this Maintenance Plan. The Illinois EPA has prepared this plan in consultation with the Indiana Department of Environmental Management (IDEM), the Wisconsin Department of Natural Resources (WDNR), and the Michigan Department of Environmental Quality (MDEQ), the Lake Michigan Air Directors Consortium (LADCO), and U.S. EPA. The IDEM is preparing a similar plan for the Indiana portion of the Chicago nonattainment area. With the exception of Holland, Michigan, the entire Lake Michigan region, including the Chicago area, has at least three years of complete, quality assured ambient air quality monitoring data for 2006-2008, demonstrating attainment with the 8-hour ozone NAAQS.

This document also provides the technical information needed to support a request to redesignate the Chicago area to attainment of the 8-hour ozone NAAQS. Section 107 of the Clean Air Act (CAA) establishes specific requirements to be met in order for a nonattainment area to be considered for redesignation. Before an area can be reclassified to attainment, U.S. EPA must make a determination that the area has attained the 8-hour ozone NAAQS based on at least three complete years of ambient monitoring data. U.S. EPA must have approved a State Implementation Plan (SIP) for the area under Section 110 and Part D of the CAA. The state must demonstrate that the improvement in air quality is due to permanent and enforceable reductions in emissions resulting from implementation of the SIP and other federal requirements. Finally, the state must submit, and U.S. EPA must approve, a maintenance plan under Section 175(A) of the CAA, including provisions for contingency measures that will be implemented if future violations of the 8-hour ozone NAAQS are measured.

This Maintenance Plan provides for the continued attainment of the 8-hour ozone NAAQS for the Chicago nonattainment area (NAA) for a period of ten years after U.S. EPA has formally redesignated the area to attainment. The Plan also provides assurances that even if a subsequent violation of the ozone NAAQS occurs, provisions in the Plan will prevent any future occurrences through contingency measures that would be triggered upon such occurrence.

This document addresses the maintenance plan requirements established by the CAA and U.S. EPA, and includes additional information to support continued compliance with the 8-hour ozone NAAQS.

1.1 <u>Regulatory Background</u>

The CAA, as amended in 1990, requires areas that fail to meet the NAAQS for ozone to develop SIPs to expeditiously attain and maintain the NAAQS. Historically, exceedances of the ozone NAAQS have been monitored in Cook and Lake Counties in Illinois, and in portions of Wisconsin, Indiana, and Michigan immediately downwind of the Chicago, Gary, and Milwaukee metropolitan areas.

The Chicago NAA, which includes Lake and Porter Counties in northwest Indiana, was originally designated as nonattainment in 2004 pursuant to the 1997 revisions to the ozone National Ambient Air Quality Standard. Several counties in eastern Wisconsin, and one county in western Michigan adjacent to Lake Michigan were also designated as nonattainment of the 8-hour ozone NAAQS, although these areas are separate from the Chicago NAA. Figure 1.1 depicts the current NAAs in the Lake Michigan region.

The following is a list of the counties, and portions thereof, contained in the Chicago 8-hour ozone severe nonattainment area:

- Cook County, IL
- Lake County, IL
- DuPage County, IL
- McHenry County, IL
- Kane County, IL
- Will County, IL

- Grundy County, IL (Aux Sable and Goose Lake Townships)
- Kendall County, IL (Oswego Township)
- Lake County, IN
- Porter County, IN

As a result of the designation as nonattainment and the accompanying classification as moderate, these areas were subject to new requirements, including development of a plan demonstrating that the area would meet the federal 8-hour NAAQS for ozone by June 15, 2010.

Recognizing the need for a regional solution, the States of Illinois, Indiana, Michigan, Ohio, and Wisconsin worked cooperatively, under the auspices of the Lake Michigan Air Directors Consortium (LADCO), to jointly develop and evaluate an effective regional attainment strategy to enable the Lake Michigan region to attain the 8-hour ozone NAAQS. The attainment strategy recognizes the importance of both locally generated ozone precursor emissions and the need for significant reductions of incoming (transported) ozone and ozone precursor emissions (including oxides of nitrogen, or NOx) to allow the States to attain the NAAQS. The emission reductions needed to attain the 8-hour ozone NAAQS include both State and Federal measures that have reduced ozone precursor emissions both locally and regionally. These measures have allowed the Chicago nonattainment area to attain the 8-hour ozone standard by the attainment deadline established by the U.S. EPA.

1.2 <u>Status of Air Quality</u>

Ozone monitoring data for the most recent three-year period, 2006 through 2008, demonstrates that air quality has met the NAAQS for the 8-hour ozone NAAQS in the entire Lake Michigan region, including the Chicago nonattainment area, with the exception of Holland, Michigan. Modeling performed by LADCO shows that Holland, MI will attain the ozone NAAQS by 2012.

2.0 REDESIGNATION AND MAINTENANCE PLAN REQUIREMENTS

Sections 107 and 110 of the CAA list a number of requirements that must be met by nonattainment areas prior to consideration for redesignation to attainment. One of those requirements is the maintenance plan, which reflects a state's plan for maintaining the NAAQS for a ten-year period after redesignation to attainment. U.S. EPA has published guidance for the preparation of maintenance plans and redesignation requests. This guidance is contained in a document entitled "Procedures for Processing Requests to Redesignate Areas to Attainment" (September 4, 1992).

Before a redesignation to attainment can be promulgated, U.S. EPA must:

- Determine that the NAAQS for ozone, as published in 40 CFR 50.4, has been attained. Ozone monitoring data must show that violations of the ambient NAAQS are no longer occurring. This showing must rely on three consecutive years of data. The ambient air monitoring data must be quality assured in accordance with 40 CFR 58.10, recorded in U.S. EPA's Air Quality System (AQS) data base, and is available to the public.
- Approve the state's plan for demonstrating attainment. The attainment plan, which is based on air quality modeling, must contain enforceable control measures and must be submitted as a revision to the state's SIP after a public hearing.
- Determine that the improvement in air quality between the year violations occurred and the year that attainment was achieved is based on permanent and enforceable emission reductions.
- Approve the state's maintenance plan. The requirements for the maintenance plan are discussed below.
- Determine that all other requirements applicable to nonattainment areas have been met.

A maintenance plan provides for the continued attainment of the 8-hour ozone NAAQS for a nonattainment area for a period of ten years after U.S. EPA has formally redesignated the area to attainment. The plan also provides assurances that even if a subsequent violation of the NAAQS occurs, provisions in the plan will prevent any future occurrences through contingency measures that would be triggered upon such occurrence. To be approvable, the state is required to have a public hearing on the maintenance plan prior to adoption. The maintenance plan must contain the following elements:

• A comprehensive emission inventory of the precursors of ozone completed for the "attainment year";

- A projection of the emission inventory forward to a year at least ten years after redesignation and a demonstration that the projected level of emissions is sufficient to maintain the ozone NAAQS;
- A commitment that, once redesignated, the state will continue to operate an appropriate monitoring network to verify maintenance of the attainment status;
- A demonstration of legal authority to implement and enforce all control measures contained in the SIP;
- Provisions for future updates of the inventory to enable tracking of emission levels, including an annual emission statement from major sources;
- Motor vehicle emissions budgets for transportation conformity for the ten-year maintenance period;
- A commitment to submit a revised maintenance plan eight years after redesignation;
- A commitment to enact and implement additional contingency control measures expeditiously in the event that future violations of the NAAQS occur;
- A list of potential contingency measures that would be implemented in such an event.

Illinois' Maintenance Plan has been prepared in accordance with the requirements specified in U.S. EPA's guidance document and additional guidance received from U.S. EPA staff.

The following sections of this document describe how U.S. EPA's requirements have been met.

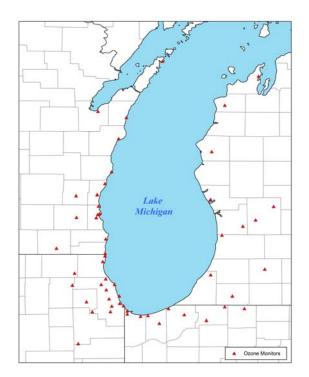
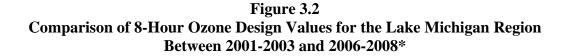
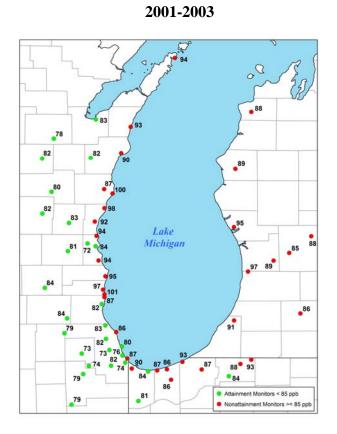
3.0 OZONE MONITORING

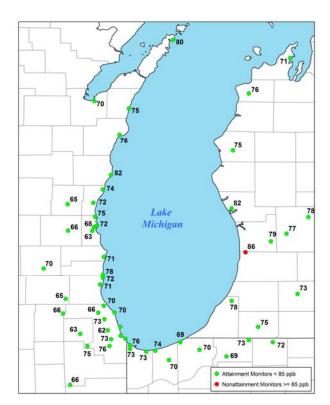
U.S. EPA's published guidance document, "Procedures for Processing Requests to Redesignate Areas to Attainment" (September 4, 1992), details specific requirements regarding the collection and use of ambient air monitoring data needed to support a redesignation request. Before the Chicago NAA can be redesignated, Illinois must demonstrate that the NAAQS for ozone, as published in 40 CFR 50.4, has been attained. Ozone monitoring data must show that violations of the NAAQS are no longer occurring within the nonattainment area. This showing must rely on three complete, consecutive calendar years of quality assured data. Further, the air monitoring data must be quality assured in accordance with 40 CFR 58.10, recorded in U.S. EPA's AQS data base, and made available to the public. Finally, Illinois must commit to continue to operate an appropriate monitoring network to verify the maintenance of the attainment status, once the area has been redesignated.

The following subsections describe how each of these requirements has been addressed.

3.1 <u>Monitored Design Values</u>

Currently there are 55 ozone monitors located in the nonattainment counties in the Lake Michigan region; 9 are located in northwestern Indiana, 17 in northeastern Illinois, 13 in western Michigan, and 16 in eastern Wisconsin.


Figure 3.1 Ozone Monitors in the Lake Michigan Area

To determine whether the NAAQS is being exceeded, the design value must be calculated. The current U.S. EPA method for calculating the ozone design value is to average the 4th highest daily maximum 8-hour value for each year over the 3-year period. The calculated 8-hour ozone design values for the monitors in the Lake Michigan region for 2006-2008 are included as Appendix A of this report. Figure 3.2 compares the design values for the 2001-2003 period for monitoring stations in the Lake Michigan region to the corresponding design values from 2006-2008. The data demonstrate that ozone air quality has improved dramatically throughout the Lake Michigan region and that the NAAQS for ozone has been attained for the 2006-2008 period at all locations except Holland, Michigan.

2006-2008*

* Data for 2008 are preliminary and subject to final verification.

3.2 **Quality Assurance**

Illinois EPA has quality assured all data shown in Appendix A in accordance with 40 CFR 58.10 and the Illinois EPA's Quality Assurance Plan, which describes Illinois EPA's standard operating procedures for operating the ambient monitoring network and validating the data. Illinois EPA has recorded the data in the U.S. EPA's AQS database, which is available to the public.

3.3 <u>Continued Monitoring</u>

Illinois commits to continue monitoring ozone levels according to a U.S. EPA approved monitoring plan, as required to ensure maintenance of the ozone NAAQS. Should changes in the location of an ozone monitor become necessary, Illinois EPA will work with U.S. EPA to ensure the adequacy of the monitoring network. Illinois EPA will continue to quality assure the monitoring data to meet the requirements of 40 CFR 58. Illinois EPA will continue to enter all data into AQS on a timely basis in accordance with federal guidelines.

4.0 **EMISSIONS INVENTORY**

A redesignation request must contain a demonstration that the improvement in air quality between the year that violations occurred and the year that attainment was achieved is based on permanent and enforceable emission reductions. As described previously in Section 3.0, a threeyear monitoring period is used to evaluate whether attainment has been achieved. In this Section, the "attainment year" refers to the first year (2006) of the three-year period (2006-2008) used to demonstrate attainment. The request should also include a projection of the emission inventory to a year at least 10 years following redesignation, a demonstration that the projected level of emissions is sufficient to maintain the ozone NAAQS, and a commitment to provide future updates of the inventory to enable tracking of emission levels during the 10-year maintenance period.

4.1 Attainment Year Inventory, 2006

Illinois EPA has prepared a comprehensive emissions inventory for the Illinois portion of the Chicago nonattainment area, including point, area, and on-road and off-road mobile sources for precursors of ozone (VOM and NOx) for the attainment year, 2006. This inventory is based on Illinois EPA's SIP submittal entitled, "Illinois Base Year Ozone Inventory for 2002", (June 2006). Point source information was compiled from 2006 annual emission reports submitted to the Illinois EPA by emission sources and the U.S. EPA's Clean Air Markets Division database for electric utilities. Area source emissions were "grown" from 2002 activity levels appropriate for each source category. Biogenic emissions are not included in these summaries. On-road mobile source emissions were calculated using U.S. EPA's MOBILE6 emissions model with vehicle miles traveled (VMT) data provided by the Illinois Department of Transportation (IDOT). Non-road mobile source emissions were calculated using U.S. EPA's NONROAD emissions model.

Table 4.1 summarizes the 2006 emissions estimates for the Chicago ozone nonattainment area.

2006 Chicago Ozone Nonattainment Area VOM and NOx Emissions (Emissions stated in tons per ozone season weekday)					
Source Category VOM NOx					
Point Sources	61.20	194.03			
Area Sources	281.43	35.64			
On-Road Mobile Sources	130.03	302.43			
Off-Road Mobile Sources 152.90 279.95					
Total	625.56	812.05			

Table 4.1

4.2 <u>Air Quality Improvement and Emission Controls</u>

The Chicago area was designated nonattainment in 2004, based on ozone air quality monitoring data collected between 2001 and 2003. Since that time, permanent and enforceable reductions of ozone precursor emissions have contributed to improvements in ozone air quality and to the attainment of the ozone NAAQS. Some of these emission reductions were due to the application of tighter federal emission standards on motor vehicles and fuels, and some due to the requirements of the federal NOx SIP Call. Section 5.0 of this report describes these reductions in more detail, along with an explanation of their regulatory status. In this subsection, the emission levels from 2006 are compared to emission levels estimated in 2002 when the Chicago area was first proposed for a nonattainment classification for the 1997 8-hour ozone standard.

U.S. EPA's 8-hour ozone Implementation Rule required that states with ozone nonattainment areas prepare and submit a 2002 base year anthropogenic inventory of sources of ozone precursor emissions. The base year inventory included emissions from point, area, on-road mobile and off-road mobile emissions. Illinois EPA prepared and submitted this inventory in June 2006. Table 4.2 summarizes 2002 emissions by major source category and by pollutant for the Illinois portion of the Chicago nonattainment area.

(Emissions stated in tons per ozone season weekday)					
Source Category	VOM	NOx			
Point Sources	76.62	307.73			
Area Sources	273.33	42.93			
On-Road Mobile Sources	168.63	408.88			
Off-Road Mobile Sources	233.77	326.65			
Total	752.35	1086.19			

Table 4.2 2002 Chicago Ozone Nonattainment Area VOM and NOx Emissions

Comparing the 2002 inventory to that for 2006 indicates that total VOM emissions in the Chicago area decreased by about 126 tons per day (tpd), due largely to reductions from on-road and off-road mobile sources. NOx emissions in the Chicago NAA decreased significantly, about 274 tpd, during the same time period. Statewide, NOx emissions decreased by almost 145 tpd, from 468 tpd in 2002 to 323 tpd in 2006. These sizeable emission reductions in ozone precursor emissions resulted in a substantial improvement in ozone air quality in the Chicago area, ultimately resulting in attainment of the 8-hour ozone NAAQS.

4.3 Emission Projections

A maintenance plan must contain a demonstration that the level of emissions projected for the ten-year period following redesignation are sufficient to maintain the ozone NAAQS. Accordingly, Illinois EPA has projected VOM and NOx emissions for the Illinois portion of the Chicago nonattainment area for 2020. Illinois EPA has also projected emissions to 2013, to represent a midpoint during the ten-year maintenance period. Emissions for these two projection years are compared to emission levels in 2006 to determine if emissions are sufficient to maintain the NAAQS during this period.

Chicago area point source emissions for 2013 and 2020 were estimated using the 2002 base year inventory and growth factors appropriate for each source category. Area source emissions were projected by applying category-specific growth factors to estimates contained in the 2002 base year inventory. County population projections for 2007 and 2012 were used to estimate emissions for categories which rely on a per capita emissions factors. Off-road emissions projections were also developed using the 2002 inventory and growth factors contained in U.S. EPA's NONROAD model. On-road motor vehicle emissions were estimated using U.S. EPA's MOBILE6 motor vehicle emissions model. The figures assume the continued use of reformulated gasoline, the continued phase-in of the Tier 2 motor vehicle emissions standards, and operation of an enhanced vehicle inspection and maintenance program. Total vehicle miles of travel (VMT) for 2013 and 2020 were assumed to increase at a rate of 1.27 percent per year from 2002.

Tables 4.3 and 4.4 include the VOM and NOx emissions estimates for the years 2013 and 2020, respectively, for the Illinois portion of the Chicago nonattainment area.

VOM and NOX Emissions					
(Emissions stated in tons per ozone season weekday)					
Source Category	VOM	NOx			
Point Sources	70.27	155.02			
Area Sources	266.33	37.58			
On-Road Mobile Sources	77.58	148.78			
Off-Road Mobile Sources	122.82	249.28			
Total	537.00	590.66			

Table 4.32013 Chicago Ozone Nonattainment AreaVOM and NOx Emissions

	JA LIIIISSIUIIS				
(Emissions stated in tons per ozone season weekday)					
Source Category	VOM	NOx			
Point Sources	81.43	153.12			
Area Sources	293.25	39.62			
On-Road Mobile Sources	56.07	79.09			
Off-Road Mobile Sources	129.15	246.54			
Total	559.90	511.37			

Table 4.42020 Chicago Ozone Nonattainment AreaVOM and NOx Emissions

4.4 <u>Demonstration of Maintenance</u>

Table 4.5 demonstrates that the level of emissions projected for the ten-year period following redesignation is sufficient to maintain the ozone NAAQS. As shown in the table, both VOM and NOx emissions within the nonattainment area are expected to decrease significantly between 2006 and 2020. Projected VOM and NOx emissions for the mid-point year, 2013, are also less than the emission levels in 2006. Based on these emission trends it is expected that air quality will continue to meet the 8-hour ozone NAAQS throughout the maintenance period.

In addition to the overall emission reductions projected to occur within the nonattainment area, significant reductions of statewide NOx emissions resulting from implementation of Illinois' multi-pollutant standards affecting electric utilities by 2012, will also help to ensure continued attainment of the 8-hour ozone NAAQS. Table 4.6 provides a summary of the expected reductions of NOx emissions resulting from implementation of Illinois' multi-pollutant standards.

TABLE 4.5 Comparison of 2006, 2013 and 2020 Emission Estimates Chicago Nonattainment Area (Emissions stated in tons per ozone season weekday)

(Emissions stated in tons per ozone season weekday)					
	2006	2013	2020		
VOM	625.56	537.00	559.90		

NOx 812.05	590.66	518.37
------------	--------	--------

Table 4.6
Estimated NOx Emission Reductions From Utility Boilers
Resulting from Implementation of Illinois' Multi-Pollutant Standards
(Emissions stated in tons per ozone season weekday)

	Jer Ozone season weekday)
2006 NOx Emissions	323
2012 NOx Emissions	163
Net reduction	160

4.5 <u>Provisions for Future Updates</u>

As required by Section 175A(b) of the CAA, Illinois commits to submit to U.S. EPA, eight years after redesignation, a revised version of this Maintenance Plan. The revision will contain Illinois' plan for maintaining the 8-hour ozone NAAQS for ten years beyond the first 10-year period after redesignation.

5.0 CONTROL MEASURES AND REGULATIONS

This section provides specific information on the control measures implemented in the Chicago nonattainment area, including the measures that were part of Illinois' Attainment Demonstration, Reasonable Further Progress (RFP) demonstration, CAA requirements, and other state and federal measures. The control measures required in past ozone SIP revisions have been fully implemented, and other, more recent control programs will continue to provide emission reductions in future years. Illinois EPA commits to keep these measures in effect after redesignation, or to provide equivalent emissions levels using alternate measures. Illinois' SIP contains acceptable provisions to provide for preconstruction review of new emission sources. After redesignation to attainment, Prevention of Significant Deterioration (PSD) requirements will apply to the construction of new major sources and to significant modifications of existing sources. Illinois has accepted delegation from U.S. EPA of this program. Illinois further commits to continue to require that all future transportation plans in the Chicago area conform with the SIP.

5.1 Attainment Demonstration Control Measures

Illinois' attainment demonstration for the Chicago nonattainment area identifies control measures that have been promulgated at either the state or federal level that are sufficient to allow the Lake Michigan region, with the exception of Holland, MI, to meet the 1997 8-hour ozone NAAQS by the required attainment date. The demonstration is described in the Illinois EPA's document: "Attainment Demonstration for the 1997 8-Hour Ozone National Ambient Air Quality for the Chicago Nonattainment Area" (Report Number AQPSTR 08-07, November 15, 2008). The primary emission reduction measures for demonstrating attainment of the ozone standard are as follows:

- o NOx SIP Call
- New Source Performance Standards (NSPS) and National Emission Standards for Hazardous Air Pollutants (NESHAPS)/Maximum Achievable Control Technology (MACT) Standards
- VOM Solvent Categories: Aerosol Coatings, Architectural and Industrial Maintenance (AIM) Coatings, Consumer Solvents
- o Enhanced Vehicle Inspection & Maintenance Program
- Reformulated Gasoline
- Tier 2 Motor Vehicle Emissions Standards and Gasoline Sulfur Control Requirements
- On-Highway Heavy-Duty Engine and Vehicle Standards and Highway Diesel Fuel Sulfur Control Requirements

- Federal Control Programs Incorporated into NONROAD Model (e.g., Nonroad Diesel Rule), plus Evaporative Large Spark Ignition and Recreational Vehicle Standards
- Tier 4 Nonroad Diesel Engine Standards and Diesel Fuel Sulfur Content Restrictions
- Marine Compression-Ignition Engine Standards and Locomotive Engine Standards
- Consent Decrees---Dynegy Midwest Generation, ConocoPhillips, CITGO, Exxon-Mobil, Marathon Ashland, Archer Daniels Midland

5.2 Reasonable Further Progress (RFP)

Since the Chicago region is classified as a moderate nonattainment area for the 8-hour ozone standard, a 15 percent net reduction in VOM emissions from 2002 levels is required by 2008 in order to meet the RFP requirement. The Illinois EPA has not relied on NOx substitution to meet its 15 percent RFP reduction, relying solely on VOM emission reductions.

Reductions in VOM emissions are primarily achieved through implementation of the control measures listed in Section 5.1.

The RFP demonstration is contained in Illinois EPA's document: "Chicago Nonattainment Area 8-Hour Ozone and Annual PM2.5 Reasonable Further Progress Demonstration", (Report Number AQPSTR 08-06, November 2008). The control measures identified in the RFP document, including those listed above, will result in a 20.0 percent reduction in VOM emissions from 2002 emissions levels by the year 2008. In addition, continuing reductions in 2009 and 2010 are estimated to result in year 2010 VOM emissions at 23.85 percent below 2002 levels. These emission reductions easily achieve the 15% RFP target for the Chicago nonattainment area.

5.3 <u>Reasonably Available Control Technology (RACT)</u>

Pursuant to Sections 172, 182(b) and (f) of the CAA, RACT is required for all existing major sources of the applicable criteria pollutant and its precursors (VOM and NOx) located in NAAs. U.S. EPA defines RACT as the lowest emission limitation that a particular source is capable of meeting by the application of control technology that is reasonably available considering technological feasibility and economic reasonableness (70 *FR* 71612; November 29, 2005). The major source threshold for moderate NAAs is defined as 100 tpy. A source generally consists of several units that emit pollutants. The sum of emissions from all units at the source determines if a unit is major and thus subject to RACT requirements.

RACT is not a new requirement under the CAA. Illinois previously addressed RACT requirements in the Chicago area in developing attainment plans for the 1-hour ozone standard. The RACT requirement for NOx was previously waived under the 1-hour ozone standard, and Illinois must adopt new regulations to implement NOx RACT in the NAA. However, Illinois has previously adopted RACT requirements for VOM emissions in the NAA. (See 35 Ill. Adm. Code Part 219) The Illinois EPA has evaluated the previously adopted regulations to determine if the RACT requirement is still being met for 8-hour ozone.

Sections 172, 182(b)(2), and 182(f) of the CAA require implementation of RACT for sources that are subject to Control Techniques Guidelines (CTGs) that are promulgated by U.S. EPA. The U.S. EPA has issued CTGs defining RACT for those categories of sources that emit the greatest amounts of VOM emissions. Illinois EPA will soon be proposing regulations to implement the revised CTGs issued by the U.S. EPA in 2006. Other than the 2006 CTGs, Illinois has adopted applicable rules addressing all CTGs published by U.S. EPA for which there are existing sources in the Chicago NAA.

Non-CTG sources are defined as major VOM sources which are not subject to CTGs, but for which RACT is required. All major sources of ozone precursors located in the ozone NAA that are not subject to individual RACT rules are subject to a generic RACT rule. These rules apply to non-CTG sources that have the potential to emit 100 tons or more per year of VOM. Thus, Illinois has met the obligation to implement RACT on non-CTG VOM sources in the NAA.

It should be noted that other regulatory requirements also affect VOM emission sources within the Chicago ozone NAA. These include Maximum Achievable Control Technology (MACT), federal New Source Performance Standards (NSPS), and National Emission Standards for Hazardous Air Pollutants (NESHAPS). These programs satisfy the RACT requirements for specific source categories because these rules are more stringent than RACT.

It is concluded from this review that Illinois' existing VOM RACT rules fulfill U.S. EPA's RACT requirements for VOM sources in the NAA. As mentioned previously, however, the RACT requirement for NOx was previously waived under the 1-hour ozone NAAQS. With respect to the 8-hour ozone NAAQS, Illinois will not pursue the NO_x waiver, so Illinois must adopt new regulations to implement NOx RACT in the NAA. The Illinois Pollution Control Board (Illinois PCB) is now considering a regulatory proposal prepared by the Illinois EPA. The

Illinois EPA will submit Illinois' NO_x RACT rules as a SIP revision once these requirements have been adopted by the Illinois PCB.

5.4 Controls to Remain in Effect

Illinois will maintain all of the control measures listed in this Section to ensure maintenance of the 8-hour ozone NAAQS. Any revisions to the control measures included as part of the Maintenance Plan will be submitted as a SIP revision to U.S. EPA for approval, and will be accompanied by a showing that such changes will not interfere with maintenance of the NAAQS.

Illinois EPA has the necessary resources to enforce any violations of its rules or permit provisions. After redesignation, it intends to continue enforcing all rules that relate to the emission of ozone precursors in the Chicago nonattainment area.

5.5 <u>Provisions for Permitting New or Modified Emission Sources</u>

Illinois has longstanding and fully implemented programs for the review of new major sources and significant modifications of existing sources. The Prevention of Significant Deterioration (PSD) program, which includes requirements for Best Available Control Technology (BACT) on major new sources or significant modifications of existing sources, will be applicable in the Chicago area once the area has been redesignated to attainment. Illinois has been delegated full authority to implement the PSD program by U.S. EPA.

5.6 <u>Transportation Conformity</u>

The purpose of this section is to describe and establish the Chicago nonattainment area motor vehicle emissions budgets associated with the 8-hour ozone Maintenance Plan SIP. Average summer weekday motor vehicle emissions budgets are being proposed for the final year of the Maintenance Plan, 2020, and for the precursor pollutants VOM and NOx. These budgets were developed consistent with the motor vehicle activity assumptions and emissions control strategies incorporated into the 8-hour ozone attainment demonstration analysis. The budgets reflect an emissions level determined using motor vehicle VMT and fleet mix provided by the Chicago Metropolitan Agency for Planning (CMAP) and are consistent with the emission levels used in the attainment demonstration.

A motor vehicle emissions budget is that portion of the total allowable emissions allocated to highway and transit vehicle use that are defined in the SIP for a certain year. The rules governing transportation conformity require certain transportation activities to be consistent with motor vehicle emissions budgets contained in control strategy implementation plans (40 CFR § 93.118). Section 93.101 of the rule defines a "control strategy [State] implementation plan revision" as a "plan which contains specific strategies for controlling the emissions and reducing ambient levels of pollutants in order to satisfy CAA requirements of reasonable further progress and attainment." In order to demonstrate conformity to the motor vehicle emissions budget, emissions from the implementation of a transportation plan or a transportation improvement

program must be less than or equal to the budget level (40 CFR § 93.118(a)).

The motor vehicle emissions budgets established and described herein were developed consistent with the methodology and control strategy assumptions used in the 8-hour ozone attainment demonstration. The effects of motor vehicle control measures are incorporated into the emissions factors produced by the U.S. EPA's MOBILE6 model. These control measures include motor vehicle emissions standards, the operation of a vehicle inspection and maintenance (I/M) program, and the required use of reformulated gasoline and low sulfur gasoline and diesel fuel.

Using the above VMT and control program assumptions and methodology, following are the year 8-hour ozone motor vehicle emissions budgets, stated in tons per ozone season weekday, for the Chicago NAA for use in determining transportation conformity.

Table 5.1:					
Proposed Chicago NAA Year 2020 Motor Vehicle Emissions Budgets 8-Hour Ozone (tons per ozone season weekday)					
Pollutant					
VOM NOx	56.07 79.09				

Complete detail on the derivation of the motor vehicle emissions budgets, including discussion of the MOBILE6 model inputs and assumptions is included in Appendix B of this report.

6.0 CONTINGENCY MEASURES

6.1 <u>Contingency Measures</u>

Section 175(A) of the CAA specifies the requirements for maintenance plans, including provisions for contingency measures that will be implemented if violations of the 8-hour ozone NAAQS are measured after redesignation to attainment. A list of potential contingency measures that would be implemented in such an event should also be included in the Maintenance Plan. Finally, the plan should provide a commitment to submit a revised maintenance plan eight years after redesignation to ensure continued maintenance for the next ten-year maintenance period.

Contingency measures are intended to provide further emission reductions in the event that violations of the 8-hour ozone NAAQS occur after redesignation to attainment. While these measures do not need to be fully adopted by the IPCB prior to the occurrence of NAAQS violations, the contingency plan should ensure that the contingency measures are adopted expeditiously once they are triggered. The Maintenance Plan must identify the triggers that determine when contingency measures will be adopted, and the measures that the state will consider.

Illinois EPA's contingency plan for the Chicago NAA is described in Table 6.1. Consistent with this plan, Illinois agrees to adopt and implement, as expeditiously as is practicable, the necessary corrective actions in the event that violations of the 8-hour ozone NAAQS occur within the Chicago maintenance area after redesignation to attainment. Further, Illinois commits to continue to implement the control measures identified in the attainment demonstration and RFP demonstration. As described in Section 5.0 of this report, Illinois has adopted and is continuing to implement a range of control measures that will greatly reduce precursor emissions, both locally and statewide. The contingency plan anticipates that these emission reductions will be sufficient to mitigate exceedances or violations of the NAAQS that may occur in the coming years without further regulatory action.

The contingency plan provides for different levels of corrective responses should ambient 8-hour ozone levels exceed the NAAQS in any year, if emissions in the NAA increase significantly above current attainment levels, or if the NAAQS is violated. A Level I response would occur in the event that: 1) the 8-hour ozone design value at any monitoring site in the Chicago NAA exceeds 84 ppb in any year, or 2) if VOM or NOx emissions increase more than 5% above the levels contained in the attainment year (2006) emissions inventory. It should be noted that U.S. EPA does not require a state to implement contingency measures when occasional exceedances are recorded. IEPA's voluntary commitment to initiate a Level I response is intended to prevent future violations of the NAAQS from ever occurring.

Illinois commits to compiling VOM and NOx emissions inventories every three years for the duration of the Maintenance Plan to facilitate the emissions trends analysis included in the contingency plan under Level I. Illinois will coordinate with LADCO and other Lake Michigan

Table 6.1

Contingency Plan for the Chicago 8-Hour Ozone Nonattainment Area

Contingency Measure	Action to be Taken	List of Potential Contingency Measures
Trigger		· ·
 Monitored ambient ozone design value exceeding 84 ppb in any year at any monitoring station in the Chicago maintenance area. The Chicago maintenance area's NOx or VOM emissions inventories increase more than 5% above the levels included in the 2006 emissions inventories. 	IL will evaluate air quality, or determine if adverse emissions trends are likely to continue. If so, IL will determine what and where controls may be required, as well as level of emissions reductions needed, to avoid a violation of the NAAQS. The study shall be completed within 9 months. If necessary, control measures shall be adopted within 18 months of determination and implemented as expeditiously as practicable, taking into consideration the ease of implementation and the technical and economic feasibility of the selected measures.	 Point Source Measures IL Multi-Pollutant Program for electric generating units Reinstate requirements for Offsets and/or LAER Apply RACT to smaller existing sources Tighten RACT for existing sources covered by US EPA CTGs. Expanded geographic coverage of NOx RACT MACT controls for industrial sources Other measures to be identified Mobile Source Measures Tier 2 Vehicle Standards and Low Sulfur Fuel
Level II Trigger A violation of the NAAQS at any monitoring station in the Chicago maintenance area.	IL will conduct a thorough analysis to determine appropriate measures to address the cause of the violation. Analysis shall be completed within 6 months. Selected measures shall be implemented within 18 months of a violation.	 Heavy Duty Diesel Standards and Low Sulfur Diesel Fuel High-enhanced I/M (OBDII) California Engine Standards Other measures to be identified Area Source Measures Architectural/Industrial Maintenance (AIM) Coatings Commercial and Consumer Products Aerosol coatings Broader geographic applicability of existing measures Other measures to be identified

states to evaluate the causes of high ozone levels or the emissions trends and to determine appropriate control measures needed to assure continued attainment of 8-hour ozone NAAQS. Under Level I, measures that could be implemented in a short time would be selected so as to be in place quickly after the Illinois EPA is aware that corrective measures have been triggered. Control measures selected under Level I will be adopted in most cases within 18 months after a determination is made, and implemented, generally, within 24 months of adoption by the IPCB. A Level II response would be implemented in the event that a violation of the 8-hour ozone NAAQS were to be measured at a monitoring site within the Chicago maintenance area. In order to select appropriate corrective measures, Illinois will work with LADCO and other Lake Michigan States to conduct a comprehensive study to determine the causes of the violation and the control measures necessary to mitigate the problem. The analysis will examine the following factors:

- the number, location, and severity of the ambient ozone concentrations;
- the weather patterns contributing to ozone levels;
- potential, contributing emissions sources;
- the geographic applicability of possible contingency measures;
- emissions trends, including timeliness of implementation of scheduled control measures;
- current and recently identified control technologies;
- air quality contributions from outside the maintenance area.

Contingency measures will be selected from those listed in Table 6.1 or from any other measure deemed appropriate and effective at the time the selection is made. This list of contingency measures is comprehensive, and it is expected that only a few of these measures would be required. The selection between measures will be based upon cost-effectiveness, emission reduction potential, economic and social considerations, ease and timing of implementation, or other appropriate factors. Implementation of necessary controls in response to a Level II trigger will take place as expeditiously as possible, but in no event later than 18 months after Illinois makes a determination, based on quality-assured ambient data, that a violation of the NAAQS has occurred.

Adoption of additional control measures is subject to necessary administrative and legal processes. Illinois EPA will solicit input from all interested and affected persons in the area prior to selecting appropriate control measures. No contingency measure will be implemented without providing the opportunity for full public participation. This process will include publication of notices, an opportunity for public hearing, and other measures required by Illinois law.

Should additional control measures be necessary, such rules would be adopted pursuant to Section 28.5 of the Illinois Environmental Protection Act, Illinois' provisions for fast-track rulemaking (415 ILCS 5/28.5). Section 28.5 enables such rules to be adopted within twelve months of proposal to the Illinois Pollution Control Board.

6.2 <u>Commitment to Revise Plan</u>

As noted in Section 4.5 above, Illinois commits to review its Maintenance Plan eight years after redesignation, as required by Section 175(A) of the CAA. The Maintenance Plan revision is intended to ensure continued attainment of the 8-hour ozone NAAQS for an additional ten-year period.

6.3 <u>Public Participation</u>

In accordance with Section 110(a)(2) of the CAA, Illinois is required to hold a public hearing prior to adoption of this Maintenance Plan and submittal to U.S. EPA. Public participation in the SIP process is provided for as follows:

- Notice of availability of the Maintenance Plan document and the time and date of the public hearing was published in the local papers for the Chicago nonattainment area on November 15, 2008.
- The public hearing to receive comments on the Maintenance Plan is currently scheduled for December 16, 2008. A summary of the comments received and Illinois EPA's responses thereto will be included as part of the submittal to U.S. EPA.

6.4 Legal Authority to Implement and Enforce

The Maintenance Plan must contain a demonstration that the State of Illinois has the necessary legal authority to implement and enforce the measures relied upon to attain and maintain the NAAQS. Illinois has the legal authority to implement and enforce the requirements of this SIP submittal pursuant to the Illinois Environmental Protection Act.

7.0 CONCLUSIONS

The Chicago nonattainment area has attained the 8-hour ozone NAAQS and complied with the applicable provisions of the Clean Air Act required of severe ozone nonattainment areas. Illinois has submitted, and U.S. EPA has approved, an attainment demonstration, that was based on air quality modeling and contains enforceable control measures. Illinois has performed an analysis that demonstrates that the Chicago NAA has attained the 8-hour ozone NAAQS and believes the air quality improvements are due to permanent and enforceable control measures. Supporting documentation is contained herein.

Illinois has prepared a Maintenance Plan that meets the requirement of the Clean Air Act. This Maintenance Plan provides for the continued attainment of the 8-hour ozone NAAQS for a period of ten years after U.S. EPA has formally redesignated the area to attainment. This Maintenance Plan provides adequate contingency measures for potential, additional emission reductions in the event that future violations of the 8-hour ozone NAAQS are observed in the area. Illinois has prepared a comprehensive emission inventory of the precursors of ozone completed for the "attainment" year 2006, and has prepared a projection of the emission inventory to a year at least 10 years following redesignation. These projections indicate that emissions levels in the Chicago nonattainment area will continue to decrease, thereby maintaining the ozone NAAQS in future years. Illinois commits to continue to operate an appropriate monitoring network to verify the maintenance of the attainment status once the area has been redesignated. Illinois EPA has the legal authority to implement and enforce all control measures.

This Maintenance Plan has been prepared in accordance with the requirements specified in U.S. EPA's guidance document, and additional guidance received from U.S. EPA staff.

APPENDIX A

Summary of Ambient Air Monitoring Data (2006-2008)

Table A.12006-2008 8-hour Ozone Design Valuesfor Monitors in the Lake Michigan Region*

State of Illinois						
County	AQS Code	Site Name	Design Value	4th High 2006	4th High 2007	4th High 2008
Cook	170310001	Alsip	76	78	85	66
Cook	170310032	Chicago (SWFP)	74	75	82	67
Cook	170310064	Chicago (U. of Chicago)	70	70	79	63
Cook	170310072	Chicago (Jardine)	67	65	75	63
Cook	170310076	Chicago (ComED)	73	75	80	66
Cook	170311003	Chicago (Taft)	73	77	79	64
Cook	170311601	Lemont	75	70	85	71
Cook	170314002	Cicero	62	60	68	60
Cook	170314007	Des Plaines	66	65	78	57
Cook	170314201	Northbrook	70	68	76	66
Cook	170317002	Evanston	70	72	80	58
DuPage	170436001	Lisle	63	62	72	57
Kane	170890005	Elgin	66	62	75	61
Lake	170971002	Waukegan	71	71	81	63
Lake	170971007	Zion	72	68	80	69
McHenry	171110001	Cary	65	57	74	65
Will	171971011	Braidwood	66	68	71	60
State of Indiana						
County	AQS Code	Site Name	Design Value	4th High 2006	4th High 2007	4th High 2008
Elkhart	180390007	Bristol	72	67	82	68
Lake	180890022	Gary	73	73	85	62
Lake	180890030	Whiting	76	81	88	61
Lake	180892008	Hammond	73	75	77	68
La Porte	180910005	Michigan City	69	75	73	59
La Porte	180910010	La Porte	70	69	78	65
Porter	181270026	Valparaiso	70	71	80	61
St. Joseph	181410010	Potato Creek St Park	69	69	75	63
St. Joseph	181411007	Granger	73	70	82	69

* All data for 2008 are preliminary and subject to final verification. Fourth high values for 2008 valid thru 10/14/08 for Illinois, 9/24/08 for Indiana, 9/30/08 for Michigan, and 9/29/08 for Wisconsin.

State of Michigan

State of Michigan						
County	AQS Code	Site Name	Design Value	4th High 2006	4th High 2007	4th High 2008
Allegan	260050003	Holland	86	91	94	73
Benzie	260190003	Frankfort/Benzonia	76	80	82	66
Berrien	260210014	Coloma	78	76	86	73
Cass	260270003	Cassopolis	75	73	83	71
Kalamazoo	260770008	Kalamazoo	73	68	81	70
Kent	260810020	Grand Rapids	77	82	84	66
Kent	260810022	Evans/Oakfield	78	81	85	69
Leelanau	260890001	Peshawbestown	71	73	79	62
Mason	261050007	Scottville	75	76	83	68
Missaukee	261130001	Houghton Lake	71	73	76	66
Muskegon	261210039	Muskegon	82	90	86	72
Ottawa	261390005	Jenison	79	83	88	67
Schoolcraft	261530001	Seney	75	76	85	64
State of Wisconsin						
•		O 14 N	_ <i>.</i> .			
County	AQS Code	Site Name	Design Value	4th High 2006	4th High 2007	4th High 2008
Brown	550090026	Site Name Green Bay	Design Value 70	4th High 2006 66	4th High 2007 82	4th High 2008 63
,			-			
Brown	550090026	Green Bay	70	66	82 92 85	63
Brown Door	550090026 550290004	Green Bay Newport Beach	70 80	66 79	82 92	63 69
Brown Door Kenosha	550090026 550290004 550590019	Green Bay Newport Beach Chiwaukee	70 80 78	66 79 79	82 92 85	63 69 72
Brown Door Kenosha Kewaunee	550090026 550290004 550590019 550610002	Green Bay Newport Beach Chiwaukee Kewaunee	70 80 78 75	66 79 79 77 78 64	82 92 85 85 85 85 67	63 69 72 65 65 60
Brown Door Kenosha Kewaunee Manitowoc	550090026 550290004 550590019 550610002 550710007	Green Bay Newport Beach Chiwaukee Kewaunee Manitowoc (Two Rivers)	70 80 78 75 76 63 68	66 79 79 77 78	82 92 85 85 85 67 75	63 69 72 65 65 60 63
Brown Door Kenosha Kewaunee Manitowoc Milwaukee	550090026 550290004 550590019 550610002 550710007 550790010	Green Bay Newport Beach Chiwaukee Kewaunee Manitowoc (Two Rivers) Milwaukee (16th St.)	70 80 78 75 76 63 68 72	66 79 79 77 78 64	82 92 85 85 85 85 67	63 69 72 65 65 60
Brown Door Kenosha Kewaunee Manitowoc Milwaukee Milwaukee Milwaukee	550090026 550290004 550590019 550610002 550710007 550790010 550790026	Green Bay Newport Beach Chiwaukee Kewaunee Manitowoc (Two Rivers) Milwaukee (16th St.) DNR SE Region	70 80 78 75 76 63 68 72 75	66 79 79 77 78 64 68	82 92 85 85 85 67 75 78 83	63 69 72 65 65 60 63 65 69
Brown Door Kenosha Kewaunee Manitowoc Milwaukee Milwaukee Milwaukee Milwaukee	550090026 550290004 550590019 550610002 550710007 550790010 550790026 550790041	Green Bay Newport Beach Chiwaukee Kewaunee Manitowoc (Two Rivers) Milwaukee (16th St.) DNR SE Region Milwaukee (UWM-North) Milwaukee (Bayside) Grafton	70 80 78 75 76 63 68 72 75 72	66 79 79 77 78 64 68 73 73 73 71	82 92 85 85 85 67 75 78	63 69 72 65 65 60 63 65
Brown Door Kenosha Kewaunee Manitowoc Milwaukee Milwaukee Milwaukee Milwaukee Milwaukee	550090026 550290004 550590019 550610002 550710007 550790010 550790026 550790041 550790085	Green Bay Newport Beach Chiwaukee Kewaunee Manitowoc (Two Rivers) Milwaukee (16th St.) DNR SE Region Milwaukee (UWM-North) Milwaukee (Bayside)	70 80 78 75 76 63 68 72 75 72 74	66 79 77 78 64 68 73 73 73 71 72	82 92 85 85 85 67 75 78 83 83 82 84	63 69 72 65 65 60 63 65 69 64 67
Brown Door Kenosha Kewaunee Manitowoc Milwaukee Milwaukee Milwaukee Milwaukee Ozaukee Ozaukee Racine	550090026 550290004 550590019 550610002 550710007 550790010 550790026 550790041 550790085 550890008	Green Bay Newport Beach Chiwaukee Kewaunee Manitowoc (Two Rivers) Milwaukee (16th St.) DNR SE Region Milwaukee (UWM-North) Milwaukee (Bayside) Grafton	70 80 78 75 76 63 68 72 75 72 74 71	66 79 79 77 78 64 68 73 73 73 71	82 92 85 85 85 67 75 78 83 82	63 69 72 65 65 60 63 65 69 64
Brown Door Kenosha Kewaunee Manitowoc Milwaukee Milwaukee Milwaukee Milwaukee Ozaukee Ozaukee Ozaukee Racine Sheboygan	550090026 550290004 550590019 550610002 550710007 550790010 550790026 550790041 550790085 550890008 550890009 551010017 551170006	Green Bay Newport Beach Chiwaukee Kewaunee Manitowoc (Two Rivers) Milwaukee (16th St.) DNR SE Region Milwaukee (UWM-North) Milwaukee (Bayside) Grafton Harrington Beach Racine Sheboygan	70 80 78 75 76 63 68 72 75 72 74 74 71 82	66 79 77 78 64 68 73 73 73 71 72 71 83	82 92 85 85 67 75 78 83 82 84 77 88	63 69 72 65 65 60 63 65 69 64 67 65 75
Brown Door Kenosha Kewaunee Manitowoc Milwaukee Milwaukee Milwaukee Milwaukee Ozaukee Ozaukee Ozaukee Racine Sheboygan Walworth	550090026 550290004 550590019 550610002 550710007 550790010 550790026 550790041 550790085 550890008 550890009 551010017 551170006 551270005	Green Bay Newport Beach Chiwaukee Kewaunee Manitowoc (Two Rivers) Milwaukee (16th St.) DNR SE Region Milwaukee (UWM-North) Milwaukee (Bayside) Grafton Harrington Beach Racine Sheboygan Lake Geneva	70 80 78 75 76 63 68 72 75 72 74 71 82 70	66 79 79 77 78 64 68 73 73 73 71 72 71 83 72	82 92 85 85 67 75 78 83 82 84 77 88 75	63 69 72 65 65 60 63 65 69 64 67 65 75 64
Brown Door Kenosha Kewaunee Manitowoc Milwaukee Milwaukee Milwaukee Milwaukee Ozaukee Ozaukee Ozaukee Racine Sheboygan	550090026 550290004 550590019 550610002 550710007 550790010 550790026 550790041 550790085 550890008 550890009 551010017 551170006	Green Bay Newport Beach Chiwaukee Kewaunee Manitowoc (Two Rivers) Milwaukee (16th St.) DNR SE Region Milwaukee (UWM-North) Milwaukee (Bayside) Grafton Harrington Beach Racine Sheboygan	70 80 78 75 76 63 68 72 75 72 74 74 71 82	66 79 77 78 64 68 73 73 73 71 72 71 83	82 92 85 85 67 75 78 83 82 84 77 88	63 69 72 65 65 60 63 65 69 64 67 65 75

* All data for 2008 are preliminary and subject to final verification. Fourth high values for 2008 valid thru 10/14/08 for Illinois, 9/24/08 for Indiana, 9/30/08 for Michigan, and 9/29/08 for Wisconsin.

APPENDIX B

Transportation Conformity

Transportation Conformity

This section describes the development of the Chicago nonattainment area motor vehicle emissions budgets associated with the Maintenance Plan for the redesignation request for the 1997 8-hour NAAQS. An average summer weekday motor vehicle emissions budget is being proposed for the year 2020 for the precursor pollutants volatile organic material ("VOM") and oxides of nitrogen ("NOx"). These budgets were developed consistent with the motor vehicle activity assumptions (e.g., fleet mix, registration distribution...) and emissions control strategies incorporated into the 8-hour ozone attainment demonstration analysis.

Background

Section 176(c)(4) of the Clean Air Act Amendments of 1990 requires that transportation plans, programs, and projects which are funded or approved under Title 23 USC must be determined to conform with State or Federal air implementation plans. A motor vehicle emissions budget is that portion of the total allowable emissions allocated to highway and transit vehicle use that are defined in the SIP for a certain year. Section 93.101 of the rule defines a "control strategy [State] implementation plan revision" as a "plan which contains specific strategies for controlling the emissions and reducing ambient levels of pollutants in order to satisfy Clean Air Act ("CAA") requirements of reasonable further progress and attainment." In order to demonstrate conformity to the motor vehicle emissions budget, emissions from the implementation of a transportation plan or a transportation improvement program ("TIP") must be less than or equal to the budget level (40 CFR § 93.118(a)).

Transportation conformity will be based on these submitted on road motor vehicle emissions budgets after the U.S. Environmental Protection Agency ("USEPA") determines that the budgets meet the adequacy criteria of the transportation conformity rule under §93.118(e). The motor vehicle emissions budgets in this submittal are adequate as each of the six criteria under §93.118(e) is satisfied. These six criteria include:

- 1. The submitted control strategy implementation plan revision or maintenance plan was endorsed by the Governor (or his or her designee) and was subject to a State public hearing.
- 2. Before the control strategy implementation plan or maintenance plan was submitted to EPA, consultation among federal, State, and local agencies occurred: full implementation plan documentation was provided to [US]EPA; and [US]EPA's stated concerns, if any, were addressed;
- 3. The motor vehicle emissions budgets(s) is clearly identified and precisely quantified;
- 4. The motor vehicle emissions budget(s), when considered together with all other emission sources, is consistent with all applicable requirements for reasonable further progress, attainment, or maintenance (whichever is relevant to the given implementation plan submission);
- 5. The motor vehicle emissions budget(s) is consistent with and clearly related to the emissions inventory and the control measures in the submitted control strategy implementation plan revision or maintenance plan, and
- 6. Revisions to previously submitted control strategy implementation plans explain and document any changes to previously submitted budgets and control measures, impacts on point and area source emissions; any changes to established safety margins; and reasons for the changes (including the basis for any changes related to emission factors or estimates of vehicle miles traveled).

This State Implementation Plan and the associated motor vehicle emissions budgets have been developed by the Illinois EPA, the designated air quality agency for the State of Illinois. The required public hearing to accept public comment on the proposed motor vehicle emissions inventory will be held at 9:00 AM, on December 16, 2008 in Room 9-031 of the James R. Thompson Center in downtown Chicago. Notification of this hearing was printed in the Chicago Sun Times on November 15, 2008. Comments on the proposed attainment demonstration and motor vehicle emissions budgets will be accepted for 30 days after the public hearing. A "Responsiveness Summary" which

addresses the written comments received will be prepared and included in the final submission

In compliance with adequacy criterion #2, a Tier 2 Conformity Consultation Team meeting has been requested to discuss the proposed Maintenance Plan and associated motor vehicle emissions budgets. The consultation Team includes representatives from the Federal Highway Administration, Federal Transit Authority, U.S. EPA, Chicago Metropolitan Agency for Planning, Illinois Department of Transportation, Regional Transportation Authority, and the Illinois EPA. In addition, the development of the Maintenance Plan was discussed at length by the LADCO Project Team, which includes a representative from the U.S. EPA Region V office. The draft Maintenance Plan is also being forwarded to the Region V representative for his review and comment. Compliance with the remaining adequacy criteria is contained within the narrative of the attainment demonstration document and this transportation conformity section.

The 8-Hour Ozone Maintenance Plan

As previously described, air quality monitoring results from 2006 to 2008 in the lower Lake Michigan area indicates that the Chicago nonattainment area has attained the 8-hour ozone standard promulgated in 1997. This draft Maintenance Plan includes nonattainment area emissions estimates for all emissions sectors for the attainment year, 2006 and for the last year of the proposed maintenance year 2020. The Maintenance Plan must demonstrate that emissions throughout the Maintenance plan time frame are less than emissions in the attainment year. The motor vehicle emissions estimate in the final year of the maintenance plan is also established as a cap, or "budget", for us in the transportation conformity process.

The motor vehicle emissions budgets established and described herein were developed consistent with the methodology and control strategy assumptions used in the 8-hour ozone Attainment Demonstrations as well as the 8-hour ozone RFP plan. The effects of these controls are incorporated into the emissions factors produced by the USEPA's MOBILE6 model. Following is a discussion of the inputs and assumptions incorporated

into the development of the proposed Maintenance Plan motor vehicle emissions budgets.

Vehicle Miles Traveled

The RFP plan described in Attainment Demonstration incorporates county-level base year 2002 average daily vehicle miles traveled (ADVMT) levels from the Illinois Department of Transportation (IDOT). The 2002 ADVMT total for the 6-county-3township Chicago NAA was approximately 160.8 million miles. This total was projected to the attainment year 2009 using an area-wide vehicle miles traveled (VMT) growth rate of 1.27 percent per year, determined through consultation between the Illinois EPA, CMAP, and LADCO. This growth rate has also been applied to project year 2020 VMT. Using this growth rate, the projected 2020 ADVMT level for the Chicago NAA was 201.8 million miles. To account for ozone season weekday traffic, the average daily VMT estimates were multiplied by Chicago area and facility type -specific Average-Daily-to-Average Summer Weekday conversion factors supplied by IDOT. Applying these factors resulted in an average summer weekday VMT *(ASWVMT) that is 11.3 percent greater than the average daily VMT. Applying this 11.3 percent factor yields a year 2020 ASWVMT total of 224.6 million. Following is a summary of the information and MOBILE6 model assumptions used included in the development of the draft motor vehicle emissions budgets.

Year: VMT estimates and motor vehicle emissions factors were developed representative of summer 2020

Typical Ozone Season Weekday: The 2002 Chicago Area ozone precursor emissions inventory, which established the baseline for the CAA-required RFP emissions reductions, is based on activity on a typical ozone season weekday. The primary parameters affected by this choice of temporal time frame are the temperature and the adjustment of VMT to account for increased travel during the summer.

Temperature: U.S. EPA guidance for the use of the MOBILE6 model calls for

the use of representative summer daily temperatures. For future years, the representative summer temperatures are the National Weather Service's climatological average minimum and maximum temperatures at Chicago's O'Hare Airport for the summer months of June, July, and August. Those are 61 °F and 81 °F, respectively.

Absolute Humidity: U.S. EPA guidance calls for the use of the lowest absolute humidity on days corresponding to the summer climatological temperatures in the region as calculated from local climatological data published by the National Weather Service. A climatological average summer weekday absolute humidity value of 97 grains of water (vapor) per pound of dry air was calculated for O'Hare Airport.

Motor Vehicle Emission Controls: The primary motor vehicle emission control programs that will be in place in the Chicago NAA in 2020 are (1) an OBD-II-based vehicle emissions testing program, and the requirement that gasoline sold in the area be "reformulated gasoline", fuel that is specially formulated to reduce emissions.

Inspection and Maintenance (I/M): The I/M program in effect since 2007 requires biennial On-Board Diagnostics (OBD) testing on all model year (MY) 1996 and newer (MY96+) light duty gasoline vehicles, and biennial exhaust idle and gas cap testing on MY96+ heavy duty gasoline vehicles including gasoline-powered buses, registered in the I/M area (the "testable area"). The program includes a 4 year grace period for new vehicles. This post-2007 I/M program was established after the Illinois legislature amended the Illinois Vehicle Inspection law in 2005 to (a) drop dynamometer testing of vehicles, (b) require an OBD-based program beginning in February 2007, and (c) remove the requirement for testing compliant pre-MY-1996 vehicles. (Motorcycles and diesel vehicles are not subject to I/M.)

The Chicago testable area is based upon urbanized areas and includes all of Cook, DuPage, and Lake Counties, and parts of Kane, McHenry, Will, and Kendall Counties. Some of the VMT in the Chicago testable area is generated by vehicles

that come from outside the testable area and are therefore not required to undergo I/M testing. Conversely, some VMT in an area without I/M (such as Grundy County's NAA townships) may be generated by I/M vehicles from a neighboring testable area. The VMT estimates used when calculating I/M emission credits for a county or township must be adjusted to reflect VMT from vehicles subject to I/M only. This is done using I/M coverage factors derived ultimately from transportation modeling outputs. (I/M Credits are subtracted from emissions calculated assuming no I/M to give Net Emissions with I/M.) The coverage factors are 98% for Cook and DuPage Counties (that is, 98% of the gasoline-vehicle VMT in the county is from vehicles subject to I/M), 95% for Lake County, 81% for Kendall County's NAA township, 65% for Will County, 60% for Kane County, 50% for McHenry County, and 25% for Grundy County's NAA townships.

Fuels: Reformulated gasoline (RFG) has been required in the Chicago NAA since 1995. The attainment demonstration and RFP plan both assume all gasoline sold in the Chicago NAA since 1995 is "Northern" RFG, and that this will continue through and beyond 2008 and 2009. Although a small amount of non-RFG fuel comes into the NAA in the fuel tanks of vehicles from outside the area, it is assumed that the use of non-reformulated gasoline fuel in the Chicago area is negligible.

Gasoline Sulfur: Gasoline sulfur levels were assumed to be 30 parts per million (ppm) in 2020 in accordance with the federal Tier 2 gasoline regulations which required the 30 ppm level beginning in 2006.

Diesel Sulfur: Diesel sulfur levels were assumed to be 15 parts per million in 2020 in accordance with the U.S. EPA's Highway Diesel Rule which was finalized in January 2001. This regulation required the sale of on-road diesel fuel with no greater than 15 ppm of sulfur beginning in June 2006.

Speeds: For the Chicago area, the Illinois EPA assumed an area-specific vehicle speed distribution that appears in the VMT-by-Speed-Bin external file SVMTCH07.DEF, which is described in more detail later in this document. The speed distribution in this file is for freeways and arterials only (local roads and ramps have a fixed speed in MOBILE6), and was based on transportation model output (modeled speeds on links of various classes of roads by modeling period) from CMAP (CATS) for the year 2007 (the most recent available). This speed distribution is assumed valid for 2020 as well.

VMT Mix: The regional VMT mix inputs used for 2020 were based on Chicago-areaspecific 2005 VMT-by-vehicle-type data supplied by IDOT, modified to reflect expected changes in the ratio of cars to light trucks. This information is used in the MOBILE model to compute the average emission factors for certain combined vehicle classes, and the all-vehicle emission rate.

Registration Distribution: A Chicago-area-specific vehicle registration distribution profile based upon 2003-04 information data was supplied by Illinois EPA's Division of Mobile Source Programs from data provided by the Illinois Secretary of State's Department of Motor Vehicles.

Emissions Computation: Illinois EPA calculates emissions budgets using the following formula:

No-I/M County Emissions by vehicle type (VT) and functional class (FC)
 = (County ASWVMT by FC) * (VMT Mix by VT and FC) * No-I/M emission factors
 (EF) by pollutant, VT, and FC) * 1.102 (grams to ton conversion factor). For areas without I/M, this is the only calculation.

2. I/M Credits by VT and FC = (County ASWVMT by FC) * (VMT Mix by VT and FC) * (No-I/M EF – I/M EF [both by pollutant, VT, and FC]) * I/M coverage factor * 1.102. This is for areas with I/M only.

3. Net County Emissions by VT and FC = (I/M County Emissions by VT and FC) - I/M Credits by VT and FC. This is for areas with I/M only.

The Illinois EPA performs these above calculations on a multi-page spreadsheet which automatically calculates emissions and I/M credits by county or township for each pollutant, VT, and FC, sums them by VT and FC, and aggregates them into area totals. Attachment A of this section provides additional details on the MOBILE6 model inputs used in the development of the 2020 Chicago NAA motor vehicle emissions budgets.

Motor Vehicle Emissions Budgets

Using the above VMT and control program assumptions and methodology, following are the 8-hour ozone motor vehicle emissions budgets for the Chicago area for use in determining transportation conformity.

Proposed Chicago Area Maintenance Plan				
2020 Motor Vehicle Emissions Budgets				
(tons per ozone season weekday)				
Pollutant	Emissions			
VOM	56.07			

Attachment A

Transportation Conformity

External MOBILE6.2 Inputs:

In the examples of external files shown below, the actual command lines are **boldfaced**; the unbolded lines represent comments. The actual text files have no such distinction in typefaces. The unbolded lines have been "commented out" and have no effect on the MOBILE model. They may therefore be omitted, but it is suggested that they remain in the files for documentation, and to make the files easier for the user to read and understand.

The comments and other text in the External Files have been shown in the Courier New typeface. Actual command lines—the inputs that MOBILE actually uses—are shown in **Courier New Bold**

In certain cases (especially the VMT-by-Speed-Bin files) the typeface has been reduced in size so that the lines would fit within the margins of the page. This makes them easier to read.

Vehicle Inspection and Maintenance (I/M) Program

The External I/M files giving the inputs used in the MOBILE6 model in this exercise were ILLOBDIM.D (for 2002 and through 2006) and IM07ON.D (for 2007 and later years). When evaluating I/M credits for 2008, the residual effect of the ILLOBDIM program in the summer of '08 is taken into account by assuming that 75% of the vehicle fleet subject to I/M has been tested under the IM07ON program by that time, and that the other 25% have been tested under the ILLOBDIM in late 2006 and have not yet come up for retesting under IM07ON by summer 2008 (both programs are biennial). By summer 2009, all vehicles subject to I/M will have been tested under IM07ON program.

The IM07ON.D File, used for the 2020 target year inventory

The external I/M file IM07ON.D is described below. It represents an I/M program with four components, chief of which is an OBD (on-board diagnostics) test for vehicles of model year (MY) 1996 and newer. The order in which the components appear in the external file is not significant, but they must be numbered consecutively. Illinois EPA begins IM07ON.D with identifying comments, and adds other comment lines or blank

lines to make the file easier to read and understand. Programs after the first need comparatively few comments because the commands are largely self-descriptive.

```
* Illinois ENHANCED I/M DESCRIPTION
* Filename: IM070N.D
* External input file for Illinois' OBD-only I/M program
 from 2007 on.
 OBD-only applies to light-duty vehicles only; HDVs still get
  an Idle Test & Gas Cap Check.
* All program start years set to 1986 per U.S. EPA guidance in
  "Frequently Asked Questions on MOBILE6" from U.S. EPA/OTAQ.
* This represents the NEW I/M program in which only 1996 &
  newer vehicles are tested with an OBD test; and the OBD test
*
  applies only to LDVs.
* This program came into effect in February 2007.
*_____
* Program description for post MY'96 LDV OBD I/M
*_____
* FIRST I/M program--"Evaporative]" OBD for MY 1996+ LDVs
*_____
I/M PROGRAM
                   : 1 1986 2050 2 T/O EVAP OBD
I/M MODEL YEARS : 1 1986 2050
I/M VEHICLES
                   : 1 22222 11111111 1
I/M STRINGENCY
                  : 1 20.0
I/M COMPLIANCE
                  : 1 95.0
I/M WAIVER RATES : 1 0.5 2.2 '01 data
I/M EXEMPTION AGE : 1 25
I/M GRACE PERIOD : 1 4
```

In each case, the first number after the colon refers to the I/M program's component number.

I/M PROGRAM : 1 1986 2050 2 T/O EVAP OBD

Testing began in 1986 and runs into the indefinite future (2050). The program is a biennial test-only (2 T/O, here and in other program components) program, in this case an Evaporative On-Board Diagnostics (OBD) test. The On-Board Diagnostic program in a vehicle's engine computer records information from sensors in the engine and fuel system. Indications of malfunctions or out-of-specification operations of the engine or fuel and evaporative emission control systems are stored in the engine computer as "fault codes". An OBD test consists of plugging a special scanner into an output jack from vehicle's engine computer. The scanner queries the computer and records any fault codes that the computer's OBD system has saved. OBD tests are quick, dependable, and clean, and, if a vehicle fails an OBD test, the fault codes that the scanner displays help mechanics diagnose the problem.

I/M MODEL YEARS : 1 1996 2050

This program component covers only vehicles manufactured between model year (MY) 1996 (start year) and the indefinite future (MY 2050, the end year). More and more vehicles are becoming subject to this test as new vehicles are bought and older (pre-MY-1996) ones are scrapped vehicles.

I/M VEHICLES : 1 22222 11111111 1

Only the five light-duty vehicle types (cars [LDGVs], and light trucks [LDGTs 1, 2, 3, and 4]) are covered by this program component (22222). Heavy-duty gasoline trucks (eight types) and gasoline buses are not covered by this program component (11111111 1), but rather by Programs 3 and 4, described below.

I/M STRINGENCY : 1 20.0

Stringency (exhaust inspection failure rate) is 20%. A Stringency entry is necessary for an Exhaust test, but not an Evaporative test, so this entry can be omitted or "commented out". In this Evap test case, it will be ignored by the model, but is included for reference.

I/M COMPLIANCE : 1 95.0

Compliance rate (tested vehicles as percent of all vehicles subject to I/M) is 95%

I/M WAIVER RATES : 1 0.5 2.2 '01 data

The Waiver Rate is the fraction of tested vehicles that get a waiver—i.e., do not pass the I/M test but, because repairs cost more than a specified amount, get a certificate of compliance. Waiver rate is 0.5% for MY 1980 and earlier vehicles (irrelevant now that pre-MY-96 vehicles are not tested), and 2.2% for MY 1981 and later vehicles. These figures are from VIM's actual 2001 waiver statistics, and have been representative of the last few years.

I/M EXEMPTION AGE : 1 25

Vehicles older than 25 years are not subject to this program. This will not happen until at least 2021. The default is 25, and the model does not calculate benefits for vehicles older than 25 years, so in essence this command has no effect. It could be omitted, but is included for completeness.

I/M GRACE PERIOD : 1 4

Vehicles less than 4 model years old are exempt from I/M testing.

Most of the inputs to the second and subsequent program components are the same as those for the first program, so the description of the components will be abbreviated and summarized as below, rather than after each command line as above.

The second program component is a biennial, test-only Exhaust OBD test for MY 1996 and later LDGVs and LDGTs. In this OBD test, the scanner queries the vehicle's computer for fault codes concerning exhaust emissions. Stringency, Compliance, Waiver Rates, Exemption Age, and Grace Period are the same as in the first program. An entry for I/M STRINGENCY (20%) is required for an Exhaust I/M program.

* Program description for post MY'96 HDV Idle & GC I/M
*
* Third I/M program--HDV IDLE for MY 1996+ HDVs
*
I/M PROGRAM : 3 1986 2050 2 T/O IDLE
I/M MODEL YEARS : 3 1996 2050
I/M VEHICLES : 3 11111 22222222 2
I/M STRINGENCY : 3 20.0
I/M COMPLIANCE : 3 95.0
I/M WAIVER RATES : 3 1.2 1.5 '01 data
I/M EXEMPTION AGE : 3 25
I/M GRACE PERIOD : 3 4

The third program component is a biennial, test-only Idle test for MY 1996 and later HDGVs and Gas Buses (2222222 2). Light-duty vehicles are not subject to this component (11111), but rather to components 1 and 2. Stringency, Compliance, Exemption Age, and Grace Period are the same as in component 1, but the pre- and post-MY 1981 Waiver Rates (1.2% and 1.5%, respectively), are slightly different from those in components 1 and 2. HDGVs are few in number, and most of them are commercial vehicles.

* Fourth I/M program--Gas Cap Check for MY 1996+ HDVs *-----

I/M	PROGRAM	:	4	1986 2050 2 T/O GC
I/M	MODEL YEARS	:	4	1996 2050
I/M	VEHICLES	:	4	11111 22222222 2
I/M	COMPLIANCE	:	4	95.0
I/M	WAIVER RATES	:	4	1.2 1.5 '01 data
I/M	EXEMPTION AGE	:	4	25
I/M	GRACE PERIOD	:	4	4

The fourth program component is a biennial, test-only Gas Cap Check for MY 1996 and later HDVs. Compliance, Waiver Rates, Exemption Age, and Grace Period are the same as in the third program. Since a Gas Cap Check is an evaporative I/M test, the I/M STRINGENCY command is not necessary and is not included here.

Illinois EPA includes further notes and comments in the I/M file to document it further, as shown below:

* NOTES

This is a standard Illinois I/M input, describing the I/M program with OBD Only as it is supposed to exist after January 2007. It is the file to be used for regular M6 * I/M runs for 2007 and future years. * This file was originally SB397.D, supplied 24.viij.05. * Original SB397.D has been slightly revised by the addition of comments such as this one. The actual inputs have not been changed. This was done to put the two LDV OBD programs (exhaust and evaporative) together, and the two HDV programs together too. The order of the programs in the I/M file is not significant and has no effect in M6, but the programs must be numbered sequentially. * DVIM verified that this file as shown is correctly describes the * I/M program planned for introduction in January '07. _____ * COMPARISON WITH ILLOBDIM.D: * The first three programs in ILLOBDIM.D, covering the idle test for MY'68-'81 LDVs, IM240 for '81-'95 LDVs, and gas cap check for MY'68-'95 LDVs have been eliminated from * IM070N; and the two HDV programs now refer only to MY'96 * and later.

There is no "MYCUTS.D" file associated with IM07ON.D, as there was in the previous ILLOBDIM.D file. The old ILLOBDIM.D file is not included here.

The Registration Distribution

The Registration Distribution (RD) for a vehicle type is an indication of the fraction of the vehicle fleet of that type that is made up of vehicles of a given age.

The following is based on 2003 registration data from the Illinois Secretary of State's office (ISOS). It and its contents are described in detail in the comments to the file. This

file contains data (commented out so not used) from the 2001 RD file (CHIRD01) for historical and reference purposes. As noted above, those data may be deleted.

REG DIST

* This file CHIRD03.D is derived from REGDATA.D, the default MOBILE6 RD file. This file was created 22.ij.06 by SSL and revised on 10.iv.06. The values shown for LDVs and LDTs are from 2003 ISOS registration data, as given in * RD03ERG.xls. In the 22.ij. version, only LDGV RDs were changed from the 2002 values, but in the 10.iv. version, the RDs for the four LDT types were changed to those given in RD03ERG.xls for the Chicago area. * This file contains Registration Distribution fractions for the 16 vehicle * classes by age for July of any calendar year for the Chicago NAA, based on 2003/41 gasoline-vehicle age distribution data supplied to IEPA by ISOS, just as the CHRD01.D file came from I/M test data supplied by DVIM. (See C:\SSLFILES\INVEN\RDAGE01.XLS.) Age distribution fractions have been rounded to 4 decimal places, and some of the RDs from for late years (typically in the last line-entries 21-25) have at times been modified by +/- 0.0001 or so as necessary to make the RDs add up to 1.0000. * The user is referred to REGDATA.D and to M6 Users Guide Section 2.8.7.1 p. 63 ff) for more detailed information about the nature of RD files. See also Section 5.3.2 (p. 169 ff) for information on converting M5b RDs to M6 RDs. See also \SOURCE\BD20.FOR for default RDs. * In this file, the first number in each distribution is an integer that indicates which of the 16 M6 vehicle classes are represented by the RD in question. That number is followed by 25 age fractions arranged in two rows of 10 values followed by a row with the last 5 values. (This is similar to the format used in M5b for RDs.) * RDs for all vehicle classes are given in this file. This is for completeness even though only those vehicle classes whose RDs were changed from the * REGDATA defaults need to be included in this file. Those that were not changed, are so noted. * It is assumed that the RDs for diesel vehicles are the same as the RDs for * the corresponding gasoline vehicles; in particular, LDDV and LDDT RDs are assumed the same as LDGV and LDGT RDs. Since the (default) HDV RDs are based more on diesel vehicles to start with, and HDGVs are many fewer than HDDVs, especially in the higher weight classes, we feel the HDV RDs represent both HDGV and HDDV reasonably well. * Default RDs assumed for the various HDV classes. Good area-specific * HDV age distribution data are lacking--RD03ERG covered only LDVs--and besides, much Chicago-area HDV VMT is from vehicles registered outside the Chicago area. The best choice, then, was to go with the HDV defaults; and similarly with MCs. ---SL * M6 LDV = M5 LDV (Light-duty Vehicles--passenger cars--from * RD03ERG.XLS for Chicago 1 0.0603 0.0804 0.0805 0.0818 0.0845 0.0773 0.0673 0.0670 0.0574 0.0620 0.0493 0.0449 0.0388 0.0331 0.0280 0.0233 0.0169 0.0122 0.0089 0.0067 0.0045 0.0025 0.0014 0.0009 0.0101 * The following, commented out, are the CHIRDO1 values. *1 0.0548 0.0870 0.0798 0.0735 0.0751 0.0668 0.0775 0.0655 0.0609 0.0565 0.0530 0.0505 0.0472 0.0399 0.0295 0.0241 0.0174 0.0114 0.0062 0.0033 0.0023 0.0024 0.0030 0.0021 0.0103 * M6 LDT1 = M5 LDT1 from RD03ERG.xls for Chicago 2 0.0796 0.1061 0.1062 0.0532 0.0365 0.0331 0.0358 0.0331 0.0546 0.0569

0.0676 0.0520 0.0396 0.0516 0.0443 0.0444 0.0300 0.0282 0.0188 0.0103 0.0052 0.0026 0.0021 0.0016 0.0066 * The following, commented out, are the CHIRD01 values * 2 0.0746 0.1128 0.1041 0.1055 0.0886 0.0737 0.0719 0.0694 0.0572 0.0451 $0.0437 \ 0.0329 \ 0.0333 \ 0.0289 \ 0.0202 \ 0.0140 \ 0.0092 \ 0.0053 \ 0.0024 \ 0.0015$ 0.0011 0.0006 0.0008 0.0006 0.0026 * M6 LDT2 = LDT2 from RD03ERG.xls for Chicago 3 0.0767 0.1023 0.1024 0.1053 0.1024 0.0893 0.0920 0.0766 0.0563 0.0517 0.0434 0.0348 0.0237 0.0157 0.0082 0.0061 0.0061 0.0015 0.0014 0.0010 0.0009 0.0005 0.0003 0.0002 0.0012 * The following, commented out, are the CHIRDO1 values * 3 0.0746 0.1128 0.1041 0.1055 0.0886 0.0737 0.0719 0.0694 0.0572 0.0451 0.0437 0.0329 0.0333 0.0289 0.0202 0.0140 0.0092 0.0053 0.0024 0.0015 0.0011 0.0006 0.0008 0.0006 0.0026 * M6 LDT3 = LDT3 from RD03ERG.xls for Chicago 4 0.0674 0.0899 0.0900 0.0830 0.0867 0.1041 0.0614 0.0594 0.0433 0.0571 $0.0479 \ 0.0391 \ 0.0303 \ 0.0218 \ 0.0232 \ 0.0236 \ 0.0185 \ 0.0130 \ 0.0092 \ 0.0066$ 0.0049 0.0031 0.0017 0.0005 0.0143 * The following, commented out, are the CHIRD01 values * 4 0.0629 0.1095 0.1300 0.0889 0.0835 0.0624 0.0725 0.0611 0.0455 0.0388 0.0300 0.0348 0.0387 0.0313 0.0236 0.0225 0.0161 0.0123 0.0076 0.0034 $0.0017 \ 0.0032 \ 0.0074 \ 0.0049 \ 0.0074$ * M6 LDT4 = LDT2 from RD03ERG.xls for Chicago 5 0.0695 0.0926 0.0927 0.1167 0.1127 0.1290 0.0953 0.0753 0.0561 0.0505 0.0405 0.0135 0.0137 0.0049 0.0065 0.0041 0.0035 0.0024 0.0042 0.0029 0.0017 0.0010 0.0003 0.0002 0.0102 * The following, commented out, are the CHIRDO1 values * 5 0.0629 0.1095 0.1300 0.0889 0.0835 0.0624 0.0725 0.0611 0.0455 0.0388 0.0300 0.0348 0.0387 0.0313 0.0236 0.0225 0.0161 0.0123 0.0076 0.0034 $0.0017 \ 0.0032 \ 0.0074 \ 0.0049 \ 0.0074$ * HDV2B (Heavy-duty vehicles 2B--M6 Default RDs) 6 0.0503 0.0916 0.0833 0.0758 0.0690 0.0627 0.0571 0.0519 0.0472 0.0430 0.0391 0.0356 0.0324 0.0294 0.0268 0.0244 0.0222 0.0202 0.0184 0.0167 0.0152 0.0138 0.0126 0.0114 0.0499 * HDV3 (Heavy-duty vehicles3, same RD as HDV2B, M6 Default RDs) 7 0.0503 0.0916 0.0833 0.0758 0.0690 0.0627 0.0571 0.0519 0.0472 0.0430 0.0391 0.0356 0.0324 0.0294 0.0268 0.0244 0.0222 0.0202 0.0184 0.0167 0.0152 0.0138 0.0126 0.0114 0.0499 * HDV4 (Heavy-duty vehicles 4, M6 default RDs) 8 0.0388 0.0726 0.0679 0.0635 0.0594 0.0556 0.0520 0.0486 0.0455 0.0425 0.0398 0.0372 0.0348 0.0326 0.0304 0.0285 0.0266 0.0249 0.0233 0.0218 0.0204 0.0191 0.0178 0.0167 0.0797 * HDV5 (Heavy-duty vehicles 5, same RD as HDV4, M6 Default) 9 0.0388 0.0726 0.0679 0.0635 0.0594 0.0556 0.0520 0.0486 0.0455 0.0425 0.0398 0.0372 0.0348 0.0326 0.0304 0.0285 0.0266 0.0249 0.0233 0.0218 0.0204 0.0191 0.0178 0.0167 0.0797 * HDV6 (Heavy-duty vehicles 6, same RD as HDV4, M6 Default) 10 0.0388 0.0726 0.0679 0.0635 0.0594 0.0556 0.0520 0.0486 0.0455 0.0425 0.0398 0.0372 0.0348 0.0326 0.0304 0.0285 0.0266 0.0249 0.0233 0.0218 0.0204 0.0191 0.0178 0.0167 0.0797 * HDV7 (Heavy-duty vehicles 7, same RD as HDV4, M6 Default) 11 0.0388 0.0726 0.0679 0.0635 0.0594 0.0556 0.0520 0.0486 0.0455 0.0425 0.0398 0.0372 0.0348 0.0326 0.0304 0.0285 0.0266 0.0249 0.0233 0.0218 0.0204 0.0191 0.0178 0.0167 0.0797 * HDV8A (Heavy-duty vehicles 8A same RD as HDV4, M6 Default) 12 0.0388 0.0726 0.0679 0.0635 0.0594 0.0556 0.0520 0.0486 0.0455 0.0425 $0.0398 \ 0.0372 \ 0.0348 \ 0.0326 \ 0.0304 \ 0.0285 \ 0.0266 \ 0.0249 \ 0.0233 \ 0.0218$ 0.0204 0.0191 0.0178 0.0167 0.0797 * HDV8B (Heavy-duty vehicles 8B, same RD as HDV4, M6 Default)

13 0.0388 0.0726 0.0679 0.0635 0.0594 0.0556 0.0520 0.0486 0.0455 0.0425 0.0398 0.0372 0.0348 0.0326 0.0304 0.0285 0.0266 0.0249 0.0233 0.0218 0.0204 0.0191 0.0178 0.0167 0.0797 * HDBS (HDV School buses; this M6 RD default is assumed) 14 0.0393 0.0734 0.0686 0.0641 0.0599 0.0559 0.0522 0.0488 0.0456 0.0426 0.0398 0.0372 0.0347 0.0324 0.0303 0.0283 0.0264 0.0247 0.0231 0.0216 0.0201 0.0188 0.0176 0.0165 0.0781 * HDBT (HDV Transit buses; this M6 RD default is assumed) 15 0.0307 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 0.0614 0.0613 0.0611 0.0607 0.0595 0.0568 0.0511 0.0406 0.0254 0.0121 0.0099 0.0081 0.0066 0.0054 0.0044 0.0037 0.0114 * Motorcycles (this M6 default RD is the same as M5a/b's default RD) 16 0.1440 0.1680 0.1350 0.1090 0.0880 0.0700 0.0560 0.0450 0.0360 0.0290 0.0230 0.0970 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

External MOBILE6.2 Activity File Inputs: VMT by Facility Type, VMT by Hour, VMT by Speed Bin.

The following files were used in the 2002 base year and the 2008 and 2009 future year estimates.

VMT by Facility Type

The M6.2 default file is FVMT.D, provided with the MOBILE6 model. The Chicagoarea-specific VMT-by-facility-type file is FVMTCH07.D, shown below. It based on the most recent complete data from CMAP on VMT by hour by vehicle class. This is a very long file —about 750 lines—so for the purposes of this Attachment, only the data for vehicle types 1, 6, 11, 13, 24 (LDGV, HDGV2b, HDGV7, HDGV13, and MC) are shown; the others are omitted. See the second paragraph of the introduction to the file.

```
VMT BY FACILITY
```

```
* This is [F:\]AREASPEC\CHNAA\FVMTCH07.DEF, an FVMT file, which was
* developed from CATS 2007 transportation model output
  as given in his MF13.XLS file as sent to and recalculated by
  SL. 13.xj.02.
* VMT fractions are listed for 28 vehicle classes for each hour of
  the day starting at 6AM, as follows
   Classes 1-5 (LDGV, LDGT1, LDGT2, LDGT3, and LDGT4), and
     Classes 14, 15, and 28 (LDDV, LDDT12, LDDT34) were all assumed
     to have the "Light-duty Vehicle" distribution on page "SL VMT
     by vtype reedited" of the MF13 file.
   Classes 6-10 and 16-20 (HDGV2b-HDGV6 and HDDV2b-HDDV6) were assumed
    to have the "LTRK" (light HDV) distribution on that page.
   Classes 11 & 12 and 21 & 22 (HDGV7 & HDGV8a, and HDDV7 & HDDV8a) were
    assumed to have the "MTRK" (medium HDV) distribution on that page.
   Classes 13 and 23 (HDGV8b and HDDV8b) were assumed to have the
    "HTRK" (heavy HDV) distribution on that page
   Classes 24 and 25-27 (Motorcycles and the three bus classes [HDGB,
*
    HDDBT and HDDBS]) were assumed to have the default distribution
    for those types in FVMT.DEF.
```

* * The four values in each line represent the VMT distribution on * freeway, arterial, local and ramps--in that order--as shown. * See M6UG 2.8.5.1.f., p. 49, or CLASLIST.TXT for further info. * (The CLASLIST file describes the vehicle classes.) * Veh Int& Arts& Local *Class Fwys Colls Rd/St Ramps *____ ____ _ _ _ _ _ ____ ____ + 1 0.3341 0.5393 0.1105 0.0161 0.2604 0.6106 0.1160 0.0130 0.2604 0.6106 0.1160 0.0130 0.2669 0.5831 0.1365 0.0135 0.2576 0.5823 0.1468 0.0133 0.2576 0.5823 0.1468 0.0133 0.2576 0.5823 0.1468 0.2576 0.5823 0.1468 0.0133 0.0133 0.2683 0.5830 0.1354 0.0133 0.2683 0.5830 0.1354 0.0133 0.2646 0.5911 0.1315 0.0128 0.2646 0.5911 0.1315 0.0128 0.2825 0.5568 0.1468 0.0139 0.2825 0.5568 0.1468 0.0139 0.3363 0.5122 0.1358 0.0157 0.3363 0.5122 0.1358 0.0157 0.3363 0.5122 0.1358 0.0157 0.3363 0.5122 0.1358 0.0157 0.3363 0.5122 0.1358 0.0157 0.3363 0.5122 0.1358 0.0157 0.3363 0.5122 0.1358 0.0157 0.3363 0.5122 0.1358 0.0157 0.3363 0.5122 0.1358 0.0157 0.3363 0.5122 0.1358 0.0157 0.3363 0.5122 0.1358 0.0157

[Data for Vehicle Types 2 through 5 omitted]

0.3836	0.5157	0.0827	0.0180
0.3045	0.5985	0.0822	0.0148
0.3045	0.5985	0.0822	0.0148
0.3589	0.5412	0.0829	0.0170
0.3791	0.5203	0.0826	0.0180
0.3791	0.5203	0.0826	0.0180
0.3791	0.5203	0.0826	0.0180
0.3791	0.5203	0.0826	0.0180
0.3606	0.5397	0.0827	0.0170
0.3606	0.5397	0.0827	0.0170
0.3581	0.5432	0.0816	0.0171
0.3581	0.5432	0.0816	0.0171
0.4101	0.4884	0.0815	0.0200
0.4101	0.4884	0.0815	0.0200
0.4312	0.4663	0.0818	0.0207
0.4312	0.4663	0.0818	0.0207
0.4312	0.4663	0.0818	0.0207
0.4312	0.4663	0.0818	0.0207
0.4312	0.4663	0.0818	0.0207
0.4312	0.4663	0.0818	0.0207
0.4312	0.4663	0.0818	0.0207
0.4312	0.4663	0.0818	0.0207
0.4312	0.4663	0.0818	0.0207
0.4312	0.4663	0.0818	0.0207
	0.3045 0.3045 0.3589 0.3791 0.3791 0.3791 0.3606 0.3606 0.3581 0.4101 0.4101 0.4312 0.4312 0.4312 0.4312 0.4312 0.4312 0.4312 0.4312 0.4312 0.4312	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{cccccc} 0.3045 & 0.5985 & 0.0822 \\ 0.3045 & 0.5985 & 0.0822 \\ 0.3589 & 0.5412 & 0.0829 \\ 0.3791 & 0.5203 & 0.0826 \\ 0.3791 & 0.5203 & 0.0826 \\ 0.3791 & 0.5203 & 0.0826 \\ 0.3791 & 0.5203 & 0.0826 \\ 0.3606 & 0.5397 & 0.0827 \\ 0.3606 & 0.5397 & 0.0827 \\ 0.3581 & 0.5432 & 0.0816 \\ 0.4101 & 0.4884 & 0.0815 \\ 0.4101 & 0.4884 & 0.0815 \\ 0.4312 & 0.4663 & 0.0818 \\ 0.4312 & $

•

[Data for Vehicle Types 7 through 11 omitted]

Louiu	101 / 01110	ie rypes	/ 111048	
•				
11			0.0752	
			0.0749	
			0.0749	
	0.3905	0.5165	0.0755	0.0175
	0.4111	0.4952	0.0752	0.0185
	0.4111	0.4952	0.0752	0.0185
	0.4111	0.4952	0.0752	0.0185
	0.4111	0.4952	0.0752	0.0185
	0.3928	0.5144	0.0753	0.0175
	0.3928	0.5144	0.0753	0.0175
	0.3896	0.5185	0.0742	0.0177
	0.3896	0.5185	0.0742	0.0177
	0.4423	0.4630	0.0743	0.0204
	0.4423	0.4630	0.0743	0.0204
	0.4619	0.4425	0.0745	0.0211
	0.4619	0.4425	0.0745	0.0211
	0.4619	0.4425	0.0745	0.0211
	0.4619	0.4425	0.0745	0.0211
	0.4619	0.4425	0.0745	0.0211
	0.4619	0.4425	0.0745	0.0211
	0.4619	0.4425	0.0745	0.0211
	0.4619	0.4425	0.0745	0.0211
	0.4619	0.4425	0.0745	0.0211
			0.0745	

[Data for Vehicle Types 7 through 12 omitted]

13	0 6106	0 2200	0 0420	0.0165
13	0.6106			
	0.5563	0.3937		
	0.5563	0.3937	0.0367	0.0133
	0.6241	0.3235	0.0376	0.0148
	0.6260	0.3178	0.0403	0.0159
	0.6260	0.3178	0.0403	0.0159
	0.6260	0.3178	0.0403	0.0159
	0.6260	0.3178	0.0403	0.0159
	0.6561	0.2957	0.0340	0.0142
	0.6561	0.2957	0.0340	0.0142
	0.6029	0.3414	0.0401	0.0156
	0.6029	0.3414	0.0401	0.0156
	0.5776	0.3523	0.0508	0.0193
	0.5776	0.3523	0.0508	0.0193
	0.5737	0.3512	0.0547	0.0204
	0.5737	0.3512	0.0547	0.0204
	0.5737	0.3512	0.0547	0.0204
	0.5737	0.3512	0.0547	0.0204
	0.5737	0.3512	0.0547	0.0204
	0.5737	0.3512	0.0547	0.0204
	0.5737	0.3512	0.0547	
	0.5737	0.3512	0.0547	
	0.5737	0.3512		
	0.5737	0.3512	0.0547	0.0204

[Data for Vehicle Types 14 through 23 omitted]

24	0.392	0.457	0.117	0.034
	0.344	0.497	0.129	0.030
	0.338	0.497	0.135	0.029
	0.349	0.492	0.129	0.030
	0.346	0.497	0.127	0.030
	0.333	0.509	0.129	0.029

•

0.324	0.516	0.132	0.028
0.334	0.506	0.131	0.029
0.334	0.506	0.131	0.029
0.320	0.519	0.134	0.028
0.330	0.506	0.135	0.029
0.312	0.521	0.140	0.027
0.295	0.538	0.141	0.026
0.310	0.527	0.137	0.027
0.329	0.510	0.133	0.029
0.343	0.497	0.131	0.030
0.381	0.460	0.126	0.033
0.405	0.437	0.123	0.035
0.426	0.418	0.118	0.037
0.443	0.403	0.115	0.039
0.457	0.394	0.110	0.040
0.461	0.391	0.107	0.040
0.453	0.400	0.108	0.039
0.418	0.434	0.112	0.036

[Data for Vehicle Types 25 through 28 omitted; the file ends after Vehicle Type 28.]

VMT by Hour of the Day

The MOBILE6.2 default file is HVMT.D. The most current Chicago-area-specific file is HVMTCH7R.SL, shown below, derived from 2007 modeling output from CMAP. Again, this file contains "commented-out" data from previous files for comparison purposes.

```
VMT BY HOUR
  Fraction of all vehicle miles traveled by hour of the day.
*
  First hour is 6 a.m. These data are for the Chicago NAA for
   2007, derived from CMAP VbyHr07.def file based
   upon his run iepa07 300_20070830, VMT for 2007.
*
  This file is HVMTCH7R.SL representing SL's estimate of VMT by hour.
   IEPA estimates are based on CMAP data, but assume VMT in multi-hour
   modeling periods is distributed as the default is distributed across
   the hours in question. Calculations made from VbyHr07.def
   in accordance with USEPA guidance on the subject. See M6 Technical Guidance
*
   Document (Jan '02) Section 4.3.3 for details.
0.03358 0.07039 0.06240 0.07658 0.05870 0.06327
0.06609 0.06207 0.06693 0.07118 0.07991 0.07507
0.05924 0.04599 0.02160 0.01851 0.01360 0.01010
0.00757 0.00603 0.00568 0.00561 0.00687
                                            0.01304
  Here are RP's original fractions from VbyHr07.def
*
  0.033579 0.066392 0.066392 0.076578 0.062532 0.062532
  0.062532 0.062532 0.069056 0.069056 0.077490 0.077490
  0.052616 0.052616 0.010861 0.010861 0.010861 0.010861
*
  0.010861 0.010861 0.010861 0.010861 0.010861 0.010861
*
  These following are the default values from HVMT.DEF
*
   supplied for comparison.
*
      0.0569 0.0740 0.0655
                             0.0555 0.0540 0.0582
*
      0.0608 0.0571 0.0598 0.0636 0.0777 0.0730
*
      0.0501 0.0389 0.0308 0.0264 0.0194 0.0144
      0.0108 0.0086 0.0081 0.0080 0.0098 0.0186
```

*
*
Following are SL's original HVMTCH07 fractions based upon DE's '07 model
* runs made in 2002 (for information).
* 0.0443 0.0851 0.0755 0.0577 0.0541 0.0583
* 0.0609 0.0572 0.0659 0.0701 0.0818 0.0769
* 0.0576 0.0447 0.0219 0.0188 0.0138 0.0102
* 0.0077 0.0061 0.0058 0.0057 0.0070 0.0132

All these Hourly-VMT files show similar profiles, with morning and afternoon peaks, a noontime dip, and a minimum about 3AM - 4AM, which is to be expected.

VMT by Speed Bin

The MOBILE6.2 default file is SVMT.D. The Chicago-area-specific Speed-bin file is SVMTCH07.DEF, shown below. It represents 2007 CMAP transportation model output.

<pre>N1111 0.0053 0.0044 0.0088 0.0299 0.0300 0.0484 0.0641 0.0632 0.0709 0.0801 0.0981 0.2160 0.1953 0.0857 1 2 0.0135 0.0570 0.0859 0.0790 0.0766 0.0954 0.0681 0.0704 0.0722 0.1018 0.0761 0.1084 0.0524 0.0432 1 3 0.0135 0.0570 0.0859 0.0790 0.0766 0.0954 0.0681 0.0704 0.0722 0.1018 0.0761 0.1084 0.0524 0.0432 1 4 0.0017 0.0054 0.0027 0.0159 0.0331 0.0451 0.0702 0.0761 0.0892 0.1259 0.1164 0.2390 0.0989 0.0805 1 5 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.975 1 6 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.975 1 7 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.975 1 8 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.975 1 8 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.975 1 8 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.975 1 9 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0554 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0554 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.0013 0.0055 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0055 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0055 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0702 0.0901 0.1509 0.5215 0.9919 1 14 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 14 0.0016 0.0013 0.0055 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0704 0.2801 0.1509 0.5215 0.9919 1 14 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 14 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 14 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 20 0.011 0.0002 0.0000 0.0000</pre>	SPEED VM	r												
0.0857 1 2 0.0135 0.0570 0.0859 0.0790 0.0766 0.0954 0.0681 0.0704 0.0722 0.1018 0.0761 0.1084 0.524 0.0432 1 4 0.0017 0.0570 0.0859 0.0790 0.0766 0.0954 0.0681 0.0704 0.0722 0.1018 0.0761 0.1084 0.524 0.0432 1 4 0.0017 0.0054 0.0027 0.0159 0.0331 0.0451 0.0702 0.0761 0.0892 0.1259 0.1164 0.2390 0.0989 0.0805 1 5 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 6 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 7 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 8 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.582 0.0740 0.1160 0.1244 0.2584 0.1237 0.975 1 9 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0554 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.866 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0554 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.866 1 10 0.0013 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.648 1 1 0.0061 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.648 1 1 0.0011 0.0002 0.0000 0.0000 0.0003 0.0110 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2975 1 14 0.0011 0.0002 0.0000 0.0000 0.0003 0.0011 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 14 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 14 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 2 0.0011 0.0002 0.0000 0.			0.0044	0.0088	0.0299	0.0300	0.0484	0.0641	0.0632	0.0709	0.0801	0.0981	0.2160	0.1953
0.0432 1 3 0.0135 0.0570 0.0859 0.0790 0.0766 0.0954 0.0681 0.0704 0.0722 0.1018 0.0761 0.1084 0.0524 0.0432 1 4 0.0017 0.0054 0.0027 0.0159 0.0331 0.0451 0.0702 0.0761 0.0892 0.1259 0.1164 0.2390 0.0989 0.0805 1 5 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 1 6 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 1 7 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 1 8 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 1 9 0.0072 0.0093 0.0142 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 1 9 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.066 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.066 1 10 0.0012 0.0093 0.0142 0.0382 0.0420 0.0478 0.0554 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0664 1 10 0.0012 0.0032 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.648 1 12 0.0016 0.0013 0.0559 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 1 14 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 14 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 14 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 14 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 14 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.														
1 3 0.0135 0.0570 0.0859 0.0790 0.0766 0.0954 0.0681 0.0704 0.0722 0.1018 0.0761 0.1084 0.0524 0.0432 1 4 0.0017 0.0054 0.0027 0.0159 0.0331 0.0451 0.0702 0.0761 0.0892 0.1259 0.1164 0.2390 0.0989 0.0805 1 5 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 7 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 9 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 9 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 9 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 12 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0649 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 16 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 2 0.0011 0.0002 0.0000 0.0		.0135	0.0570	0.0859	0.0790	0.0766	0.0954	0.0681	0.0704	0.0722	0.1018	0.0761	0.1084	0.0524
0.0432 1 4 0.0017 0.0054 0.0027 0.0159 0.0331 0.0451 0.0702 0.0761 0.0892 0.1259 0.1164 0.2390 0.0989 0.0805 1 5 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 1 6 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 1 7 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 1 7 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 1 7 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 1 9 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0554 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0554 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0666 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0554 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 12 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 13 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 1 15 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 1 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0														
1 4 0.0017 0.0054 0.0027 0.0159 0.0331 0.0451 0.0702 0.0761 0.0892 0.1259 0.1164 0.2390 0.0989 0.0805 1 5 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 7 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 8 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 9 0.0072 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 9 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 11 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 12 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 13 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 1 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 1 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 1 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 1 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 1 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.09	1 3 0.	.0135	0.0570	0.0859	0.0790	0.0766	0.0954	0.0681	0.0704	0.0722	0.1018	0.0761	0.1084	0.0524
0.0805 1 5 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 1 6 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 1 7 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 7 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 8 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 9 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0666 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0550 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.648 1 12 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.6648 1 13 0.0016 0.013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 1 15 0.0011 0.0002 0.0000 0.0000 0.0003 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 1 0 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0	0.0432													
1 5 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 6 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 8 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 9 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 11 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 13 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 10 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919	140.	.0017	0.0054	0.0027	0.0159	0.0331	0.0451	0.0702	0.0761	0.0892	0.1259	0.1164	0.2390	0.0989
0.0975 1 6 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 7 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 8 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 9 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.0072 0.0033 0.0142 0.0382 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 12 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 13 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 15 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 14 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 12 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002	0.0805													
1 6 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 7 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 8 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 9 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 11 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.6648 1 12 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.6648 1 13 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 16 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 10 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 10 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 10 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919	1 5 0.	.0017	0.0047	0.0109	0.0329	0.0238	0.0300	0.0439	0.0582	0.0740	0.1160	0.1244	0.2584	0.1237
0.0975 1 7 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 8 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 9 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0666 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.0017 0.025 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 12 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 13 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 14 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 14 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 14 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 14 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 23 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 24 0.0011 0.0002	0.0975													
1 7 0.0017 0.0047 0.0109 0.0329 0.0328 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 8 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 9 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 11 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 12 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 13 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 15 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 16 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 19 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0008 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.9919 1 23 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.038	160.	.0017	0.0047	0.0109	0.0329	0.0238	0.0300	0.0439	0.0582	0.0740	0.1160	0.1244	0.2584	0.1237
0.0975 1 8 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 9 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.6648 1 12 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 13 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 15 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 16 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.000	0.0975													
1 8 0.0017 0.0047 0.0109 0.0329 0.0238 0.0300 0.0439 0.0582 0.0740 0.1160 0.1244 0.2584 0.1237 0.0975 1 9 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 12 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 13 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 15 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 16 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 16 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 19 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919	170.	.0017	0.0047	0.0109	0.0329	0.0238	0.0300	0.0439	0.0582	0.0740	0.1160	0.1244	0.2584	0.1237
0.0975 1 9 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 11 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 12 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 13 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 15 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 14 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 14 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.00														
1 9 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 11 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 12 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 13 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 15 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 16 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 19 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 21 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 21 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0008 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919		.0017	0.0047	0.0109	0.0329	0.0238	0.0300	0.0439	0.0582	0.0740	0.1160	0.1244	0.2584	0.1237
0.0866 1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 11 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 12 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 13 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 15 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 17 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 10 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0														
1 10 0.0072 0.0093 0.0142 0.0382 0.0420 0.0478 0.0654 0.0898 0.0849 0.1104 0.1195 0.2126 0.0722 0.0866 1 11 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 12 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 13 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 15 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 16 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 21 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919		.0072	0.0093	0.0142	0.0382	0.0420	0.0478	0.0654	0.0898	0.0849	0.1104	0.1195	0.2126	0.0722
0.0866 1 10 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 12 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 13 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 15 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 16 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 17 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 2 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919														
1 11 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 12 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 3 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 15 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 16 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 21 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.000		.0072	0.0093	0.0142	0.0382	0.0420	0.0478	0.0654	0.0898	0.0849	0.1104	0.1195	0.2126	0.0722
0.0648 1 12 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 13 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 15 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 16 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 17 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 19 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919														
1 12 0.0081 0.0325 0.0434 0.0683 0.0493 0.0530 0.0780 0.0803 0.0773 0.0953 0.1179 0.1443 0.0875 0.0648 1 13 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0012 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 15 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 17 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 19 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919		.0081	0.0325	0.0434	0.0683	0.0493	0.0530	0.0780	0.0803	0.0773	0.0953	0.1179	0.1443	0.0875
0.0648 1 13 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 15 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 16 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 17 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919														
1 13 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 15 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 16 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 17 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 19 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 21 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919		.0081	0.0325	0.0434	0.0683	0.0493	0.0530	0.0780	0.0803	0.0773	0.0953	0.1179	0.1443	0.0875
0.1049 1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 15 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 16 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 17 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 19 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919		0010	0 001 2	0 0050	0 01 27	0 0007	0 0047	0 0 2 0 1	0 0550	0 0470	0 0700	0 0004	0 0000	0 0070
1 14 0.0016 0.0013 0.0059 0.0137 0.0237 0.0247 0.0391 0.0556 0.0479 0.0729 0.0904 0.2202 0.2979 0.1049 1 15 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 16 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 17 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 19 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 21 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919		.0010	0.0013	0.0059	0.013/	0.023/	0.024/	0.0391	0.0556	0.04/9	0.0729	0.0904	0.2202	0.2979
0.1049 1 15 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 16 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 17 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 19 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 21 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919		0016	0 0013	0 0050	0 01 27	0 0 0 2 2 7	0 0247	0 0 2 0 1	0 0556	0 0470	0 0720	0 0004	0 2202	0 2070
1 15 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 16 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 17 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 19 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 21 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919		.0010	0.0013	0.0059	0.013/	0.0237	0.024/	0.0391	0.0550	0.04/9	0.0729	0.0904	0.2202	0.2979
0.0919 1 16 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 17 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 19 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 21 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919		0011	0 0002	0 0000	0 0000	0 0000	0 0038	0 0101	0 0179	0 0396	0 0660	0 0091	0 1500	0 5215
1 16 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 17 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 19 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 21 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919		.0011	0.0002	0.0000	0.0000	0.0000	0.0038	0.0101	0.01/8	0.0300	0.0000	0.0981	0.1309	0.5215
0.0919 1 17 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 21 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919		0011	0.0002	0.0000	0.0000	0.0000	0.0038	0.0101	0.0178	0.0386	0.0660	0.0981	0.1509	0.5215
1 17 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 19 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 21 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215			0.0002	0.0000	0.0000	0.0000	0.0050	0.0101	0.01/0	0.0500	0.0000	0.0501	0.1303	0.5215
0.0919 1 18 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 19 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 21 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919		.0011	0.0002	0.0000	0.0000	0.0000	0.0038	0.0101	0.0178	0.0386	0.0660	0.0981	0.1509	0.5215
1 18 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 19 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 21 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215														
0.0919 1 19 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 21 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919		.0011	0.0002	0.0000	0.0000	0.0000	0.0038	0.0101	0.0178	0.0386	0.0660	0.0981	0.1509	0.5215
0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0003 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 21 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215														
0.0919 1 20 0.0011 0.0002 0.0000 0.0000 0.0003 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 21 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215		.0011	0.0002	0.0000	0.0000	0.0000	0.0038	0.0101	0.0178	0.0386	0.0660	0.0981	0.1509	0.5215
0.0919 1 21 0.0011 0.0002 0.0000 0.0000 0.0003 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0003 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215														
1 21 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215	1 20 0.	.0011	0.0002	0.0000	0.0000	0.0000	0.0038	0.0101	0.0178	0.0386	0.0660	0.0981	0.1509	0.5215
0.0919 1 22 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215	0.0919													
1 22 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215	1 21 0.	.0011	0.0002	0.0000	0.0000	0.0000	0.0038	0.0101	0.0178	0.0386	0.0660	0.0981	0.1509	0.5215
0.0919 1 23 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215	0.0919													
1 23 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215 0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0008 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215	1 22 0.	.0011	0.0002	0.0000	0.0000	0.0000	0.0038	0.0101	0.0178	0.0386	0.0660	0.0981	0.1509	0.5215
0.0919 1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215	0.0919													
1 24 0.0011 0.0002 0.0000 0.0000 0.0000 0.0038 0.0101 0.0178 0.0386 0.0660 0.0981 0.1509 0.5215	1 23 0.	.0011	0.0002	0.0000	0.0000	0.0000	0.0038	0.0101	0.0178	0.0386	0.0660	0.0981	0.1509	0.5215
	0.0919													
0.0919		.0011	0.0002	0.0000	0.0000	0.0000	0.0038	0.0101	0.0178	0.0386	0.0660	0.0981	0.1509	0.5215
	0.0919													

2 1 0.0000 0.0004 0.0017 0.0041 0.0160 0.0461 0.1311 0.1952 0.1835 0.2385 0.0665 0.1170 0.0000 0.0000 2 2 0.0021 0.0328 0.0517 0.0618 0.0924 0.1181 0.1447 0.1449 0.1170 0.1185 0.0457 0.0704 0.0000 0.0000 2 3 0.0021 0.0328 0.0517 0.0618 0.0924 0.1181 0.1447 0.1449 0.1170 0.1185 0.0457 0.0704 0.0000 0.0000 2 4 0.0001 0.0007 0.0025 0.0068 0.0232 0.0572 0.1470 0.2077 0.1791 0.2034 0.0682 0.1041 0.0000 0.0000 2 5 0.0000 0.0008 0.0029 0.0074 0.0224 0.0565 0.1435 0.1985 0.1862 0.2044 0.0681 0.1093 0.0000 0.0000 2 6 0.0000 0.0008 0.0029 0.0074 0.0224 0.0565 0.1435 0.1985 0.1862 0.2044 0.0681 0.1093 0.0000 0.0000 2 7 0.0000 0.0008 0.0029 0.0074 0.0224 0.0565 0.1435 0.1985 0.1862 0.2044 0.0681 0.1093 0.0000 0.0000 2 8 0.0000 0.0008 0.0029 0.0074 0.0224 0.0565 0.1435 0.1985 0.1862 0.2044 0.0681 0.1093 0.0000 0.0000 2 9 0.0002 0.0028 0.0064 0.0149 0.0423 0.0779 0.1620 0.1879 0.1732 0.1734 0.0644 0.0947 0.0000 0.0000 2 10 0.0002 0.0028 0.0064 0.0149 0.0423 0.0779 0.1620 0.1879 0.1732 0.1734 0.0644 0.0947 0.0000 0.0000 2 11 0.0017 0.0151 0.0292 0.0423 0.0720 0.1030 0.1538 0.1654 0.1429 0.1415 0.0511 0.0821 0.0000 0.0000 2 12 0.0017 0.0151 0.0292 0.0423 0.0720 0.1030 0.1538 0.1654 0.1429 0.1415 0.0511 0.0821 0.0000 0.0000 2 13 0.0000 0.0003 0.0018 0.0039 0.0140 0.0369 0.1146 0.1939 0.1865 0.2383 0.0751 0.1348 0.0000 0.0000 2 14 0.0000 0.0003 0.0018 0.0039 0.0140 0.0369 0.1146 0.1939 0.1865 0.2383 0.0751 0.1348 0.0000 0.0000 2 15 0.0003 0.0000 0.0002 0.0008 0.0008 0.0042 0.0749 0.1565 0.1661 0.3285 0.0786 0.1890 0.0000 0.0000 2 16 0.0003 0.0000 0.0002 0.0008 0.0008 0.0042 0.0749 0.1565 0.1661 0.3285 0.0786 0.1890 0.0000 0.0000 2 17 0.0003 0.0000 0.0002 0.0008 0.0008 0.0042 0.0749 0.1565 0.1661 0.3285 0.0786 0.1890 0.0000 0.0000 2 18 0.0003 0.0000 0.0002 0.0008 0.0008 0.0042 0.0749 0.1565 0.1661 0.3285 0.0786 0.1890 0.0000 0.0000 2 19 0.0003 0.0000 0.0002 0.0008 0.0008 0.0042 0.0749 0.1565 0.1661 0.3285 0.0786 0.1890 0.0000 0.0000 2 20 0.0003 0.0000 0.0002 0.0008 0.0008 0.0042 0.0749 0.1565 0.1661 0.3285 0.0786 0.1890 0.0000 0.0000 2 21 0.0003 0.0000 0.0002 0.0008 0.0008 0.0042 0.0749 0.1565 0.1661 0.3285 0.0786 0.1890 0.0000 0.0000 2 22 0.0003 0.0000 0.0002 0.0008 0.0008 0.0042 0.0749 0.1565 0.1661 0.3285 0.0786 0.1890 0.0000 0.0000 2 23 0.0003 0.0000 0.0002 0.0008 0.0008 0.0042 0.0749 0.1565 0.1661 0.3285 0.0786 0.1890 0.0000 0.0000 2 24 0.0003 0.0000 0.0002 0.0008 0.0008 0.0042 0.0749 0.1565 0.1661 0.3285 0.0786 0.1890 0.0000 0.0000 * Speed Bins: * 2.5 5.0 10.0 15.0 20.0 25.0 30.0 35.0 40.0 45.0 55.0 60.0 50.0 65.0 +* Speed bins extend 2.5 mph on either side of the bin name (i.e., the 30 mph speed bin encompasses speeds from 27.5 to 32.5 mph), except for the 2.5 mph bin (0 to 2.5 mph) and the 65+ mph bin (62.5 mph or above) * * This is SVMTCH07.DEF. These data come from a spreadsheet page titled "[DE] spdvmt" in the * Excel file MF13.XLS, supplied to IEPA by CATS, in October '02, being VMT output from CATS's transportation model aggregated into the various speed bins by county and M6 road type for the 8 CATS time periods. SL slightly modified and reformatted the page, and verified that DE's vmt-by-speed-bin calculations were correct. See also CATS's file titled VBYSPD.DEF * The information in this file strictly speaking represents a speed

distribution for 2007, but this is assumed (after discussion with CATS) reasonably valid throughout the 2000-2020 period. * The above data are for the Chicago NAA, and for Freeways and Arterials only. See M6 User's Guide Sec. 2.8.8.2.c and Appendix B, Table 5: "Average Speed Ranges for Speed Bins (SPEED VMT Command)" for further information about this file and its use. * The first number in each line is roadway type: 1 = Freeways; 2 = Arterials. Locals and Ramps have a fixed speed in M6, and therefore are not affected by this file. * The second number is the hour of the day, hour 1 being [hour beginning at] 6 AM, and hour 24 being [hour beginning at] 5 AM the next day. * The third and subsequent numbers are the fractions of VMT in that hour that occurs within the specified speed bins. These fractions were calculated from DE's file, which gave estimates of VMT assigned to each of the 8 CATS modeling periods. * Note that, for Freeways, most VMT is in the 45-50-55-60-mph speed bins, with lower speeds more common during Peak hours (which is reasonable). Much the same holds for Arterials, where most VMT is in the 30-35-40-45 mph speed bins (also reasonable). * See also the default VMT-by-speed file SVMT.DEF for more information and comments. * --SL, 25.xj.02 Revisions: 7.ix.06...Small changes made to text of these comments by SL; no changes to numerical data.